
Extending removal and distance-removal models for abundance estimation
by modeling detections in continuous time

by

Adam Martin-Schwarze

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Statistics

Program of Study Committee:
Jarad Niemi, Co-major Professor
Philip Dixon, Co-major Professor

Petrut,a Caragea
Stephen Dinsmore

Mark Kaiser

The student author, whose presentation of the scholarship herein was approved by the
program of study committee, is solely responsible for the content of this dissertation. The

Graduate College will ensure this dissertation is globally accessible and will not permit
alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2017

Copyright c© Adam Martin-Schwarze, 2017. All rights reserved.



ii

TABLE OF CONTENTS

LIST OF TABLES iv

LIST OF FIGURES vi

ACKNOWLEDGEMENTS ix

ABSTRACT xi

CHAPTER 1. INTRODUCTION 1
1.1 Point-count survey datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Continuous-time removal-only models . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Continuous-time distance-removal models . . . . . . . . . . . . . . . . . . . . . 3

CHAPTER 2. ASSESSING THE IMPACTS OF TIME TO DETECTION DISTRIBU-
TION ASSUMPTIONS ON DETECTION PROBABILITY ESTIMATION 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Interval-censored point counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Continuous time-to-detection N-mixture models . . . . . . . . . . . . . . . . . . 8
2.4 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Ovenbird analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CHAPTER 3. DEFINING AND MODELING TWO INTERPRETATIONS OF PER-
CEPTION IN REMOVAL-DISTANCE MODELS OF POINT-COUNT SURVEYS 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Distance-removal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Distance-removal models based on three different joint distributions for observed

times and distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

CHAPTER 4. ESTIMATING AVIAN ABUNDANCE IN ROW-CROPPED FIELDS
WITH PRAIRIE STRIPS: ASSESSING A DISTANCE-REMOVAL MODEL WITH
TWO FORMS OF PERCEPTIBILITY 44
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 STRIPs point-count distance-removal surveys . . . . . . . . . . . . . . . . . . . 45
4.3 Model specification, priors, and fit criteria . . . . . . . . . . . . . . . . . . . . . 47
4.4 STRIPs analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



iii

CHAPTER 5. CONCLUSION 60
5.1 Data considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Modeling considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

REFERENCES 67

APPENDIX A. SUPPORTING TABLES AND FIGURES FOR CHAPTER 2 72

APPENDIX B. SUPPORTING DERIVATIONS, TABLES, AND FIGURES FOR CHAP-
TER 3 93

APPENDIX C. SUPPORTING FIGURES FOR CHAPTER 4 118



iv

LIST OF TABLES

Table 3.1 Percent bias of median posterior expected abundance for event, state, and
combined models fit to event and state data at various levels of availability and
perceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 3.2 Observed 50% coverage percentages for expected abundance for event,
state, and combined models fit to event and state data at various levels of avail-
ability and perceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 4.1 Counts by species over 511 point-count surveys by truncation distance and
detection distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table A.1 Simulation parameters used in Sections 2.4.1 & 2.4.2 . . . . . . . . . . . 72

Table A.2 Simulation parameters used in Section 2.4.3 . . . . . . . . . . . . . . . . 73

Table A.3 Summary of mixture vs. non-mixture model fits when the detection prob-
ability is p(det) = 0.50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table A.4 Summary of mixture vs. non-mixture model fits when the detection prob-
ability is p(det) = 0.65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table A.5 Summary of mixture vs. non-mixture model fits when the detection prob-
ability is p(det) = 0.80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table A.6 Summary of mixture vs. non-mixture model fits when the detection prob-
ability is p(det) = 0.95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table A.7 Summary of models fits across families of TTDD when true detection
probability is p(det) = 0.50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table A.8 Summary of models fits across families of TTDD when true detection
probability is p(det) = 0.65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table A.9 Summary of models fits across families of TTDD when true detection
probability is p(det) = 0.80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table A.10 Summary of models fits across families of TTDD when true detection
probability is p(det) = 0.95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



v

Table B.1 Bias of median posterior detection probability for event, state, and com-
bined models fit to event and state data simulated with various levels of avail-
ability and perceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Table B.2 Observed 50% coverage percentages for estimates of detection probability
for event, state, and combined models fit to event and state data at various levels
of availability and perceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Table B.3 Bias of median posterior availability for event, state, and combined models
fit to event and state data at various levels of availability and perceptibility . . 113

Table B.4 Observed 50% coverage percentages for estimates of availability for event,
state, and combined models fit to event and state data at various levels of avail-
ability and perceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Table B.5 Bias of median posterior perceptibility for event, state, and combined
models fit to event and state data simulated at various levels of availability and
perceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Table B.6 Observed 50% coverage percentages for estimates of perceptibility for
event, state, and combined models fit to event and state data at various lev-
els of availability and perceptibility . . . . . . . . . . . . . . . . . . . . . . . . . 116

Table B.7 Percent bias of median posterior expected abundance based on 400 obser-
vations rather than 800 (compare to Table 3.1) . . . . . . . . . . . . . . . . . . 117

Table B.8 Observed 50% coverage percentages for estimates of expected abundance
based on 400 observations rather than 800 (compare to Table 3.2) . . . . . . . 117



vi

LIST OF FIGURES

Figure 2.1 Illustration of fitting mixture exponential and mixture gamma time-to-
detection distributions (TTDDs) to interval-censored removal-sampled observa-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.2 Comparisons of posterior estimates of detection probability (medians and
coverage) for mixture and non-mixture TTDDs in Section 2.4.1 . . . . . . . . . 15

Figure 2.3 Representative examples of posterior distributions for p(det) and survey-
level log-scale abundance when data simulations and models use exponential
and/or gamma TTDDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.4 Comparisons of posterior estimates of detection probability (medians and
coverage) across TTDD families in Section 2.4.2 . . . . . . . . . . . . . . . . . . 17

Figure 2.5 Posterior parameter estimates for all models fit to Ovenbird data . . . . 21

Figure 3.1 Theoretical densities of observed detection times conditional on observed
distances and vice versa for both state and event models . . . . . . . . . . . . . 29

Figure 3.2 Posterior estimates for log(expected survey-level abundance) from a rep-
resentative complete replicate set of simulations . . . . . . . . . . . . . . . . . . 38

Figure 3.3 Model comparisons of event and state models using expected predictive
accuracy (∆elpd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.1 Schematic of designs featuring 4-8 meter prairie strips spaced at distances
of 40 meters in rowcrop-planted fields . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.2 Density of counts by species as a function of distance (i.e., counts scaled
by distance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 4.3 Total detections by time interval for each species plus empirical density
plots of observed distances by time interval for all species . . . . . . . . . . . . 51

Figure 4.4 Posterior estimates of abundance density marginally across all surveys
for models fit with varying truncation distances . . . . . . . . . . . . . . . . . . 52



vii

Figure 4.5 Posterior estimates for each species of: (i) expected log-scale abundance
per survey by treatment-year, and (ii) pairwise comparisons among treatments 53

Figure 4.6 Posterior marginal estimates of abundance density (per km2), detection
probability, availability, and perceptibility for each species . . . . . . . . . . . . 54

Figure 4.7 Posterior availability and perceptibility estimates for all species . . . . . 55

Figure A.1 Posterior estimates of p(det) across TTDD families from Section 2.4.3 . . 78

Figure A.2 Posterior parameter estimates for all models fit to the simulated non-
mixture exponential dataset in Section 2.4.3 . . . . . . . . . . . . . . . . . . . . 79

Figure A.3 Posterior parameter estimates for all models fit to the simulated expo-
nential mixture dataset in Section 2.4.3 . . . . . . . . . . . . . . . . . . . . . . 80

Figure A.4 Posterior parameter estimates for all models fit to the simulated non-
peaked non-mixture gamma dataset in Section 2.4.3 . . . . . . . . . . . . . . . 81

Figure A.5 Posterior parameter estimates for all models fit to the simulated non-
peaked gamma mixture dataset in Section 2.4.3 . . . . . . . . . . . . . . . . . . 82

Figure A.6 Posterior parameter estimates for all models fit to the simulated peaked
non-mixture gamma dataset in Section 2.4.3 . . . . . . . . . . . . . . . . . . . . 83

Figure A.7 Posterior parameter estimates for all models fit to the simulated peaked
gamma mixture dataset in Section 2.4.3 . . . . . . . . . . . . . . . . . . . . . . 84

Figure A.8 Posterior parameter estimates for all models fit to the simulated non-
peaked non-mixture lognormal dataset in Section 2.4.3 . . . . . . . . . . . . . . 85

Figure A.9 Posterior parameter estimates for all models fit to the simulated non-
peaked lognormal mixture dataset in Section 2.4.3 . . . . . . . . . . . . . . . . 86

Figure A.10 Posterior parameter estimates for all models fit to the simulated peaked
non-mixture lognormal dataset in Section 2.4.3 . . . . . . . . . . . . . . . . . . 87

Figure A.11 Posterior parameter estimates for all models fit to the simulated peaked
lognormal mixture dataset in Section 2.4.3 . . . . . . . . . . . . . . . . . . . . . 88

Figure A.12 Posterior parameter estimates for all models fit to the simulated non-
peaked non-mixture Weibull dataset in Section 2.4.3 . . . . . . . . . . . . . . . 89

Figure A.13 Posterior parameter estimates for all models fit to the simulated non-
peaked Weibull mixture dataset in Section 2.4.3 . . . . . . . . . . . . . . . . . . 90



viii

Figure A.14 Posterior parameter estimates for all models fit to the simulated peaked
non-mixture Weibull dataset in Section 2.4.3 . . . . . . . . . . . . . . . . . . . 91

Figure A.15 Posterior parameter estimates for all models fit to the simulated peaked
Weibull mixture dataset in Section 2.4.3 . . . . . . . . . . . . . . . . . . . . . . 92

Figure B.1 Posterior estimates of detection probability p(det) from a representative
complete replicate set of simulations . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure B.2 Posterior estimates for availability pa from a representative complete
replicate of simulations for event, state, and combined models fit to event and
state data at various levels of availability and perceptibility . . . . . . . . . . . 114

Figure B.3 Posterior estimates for perceptibility from a representative complete repli-
cate of simulations for event, state, and combined models fit to event and state
data at various levels of availability and perceptibility . . . . . . . . . . . . . . 115

Figure B.4 Model comparisons between combined and true models in expected pre-
dictive accuracy (∆elpd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Figure C.1 Posterior marginal estimates of abundance density (per km2), detection
probability, availability, and perceptibility for each species at every truncation
distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Figure C.2 All posterior parameter estimates across all truncation distances for
American robins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Figure C.3 All posterior parameter estimates across all truncation distances for com-
mon yellowthroat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure C.4 All posterior parameter estimates across all truncation distances for dick-
cissels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure C.5 All posterior parameter estimates across all truncation distances for east-
ern meadowlarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure C.6 All posterior parameter estimates at all truncation distances for killdeer. 123

Figure C.7 All posterior parameter estimates across all truncation distances for red-
winged blackbirds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



ix

ACKNOWLEDGEMENTS

Since my first year in Snedecor Hall, I have felt I am among my people. I grok the way

statisticians interact with and make sense of the world. I owe thanks and much of my sense

of belonging to the Department of Statistics, its faculty and staff. The Department hosts an

uncommonly communal academic culture. I feel respected and valued, and I sense clearly the

Department’s desire for me to succeed. To a person, I have found the faculty helpful and

accessible.

I wish to thank Jess Severe, who has been indispensible in navigating all things administra-

tive. I owe thanks to the statistical consulting group. Not only has consulting helped pay for my

studies, but it has imbued me with a science-oriented context for statistics, which is downright

fundamental to my understanding and practice of the discipline. I am grateful to many in my

cohort of graduate students, who love nothing better than to brainstorm and debate answers

to homework problems. Two fellow students have been indispensible. Many, many thanks to

Lendie Follett, boon consulting companion and strangely kindred spirit. Many, many thanks

to Gabriel Demuth – nearly every good idea in this dissertation has been refined and tempered

in cross-campus discussions; there are days I feel I have learned as much in dialogue with Gabe

as through my coursework.

I offer thanks to Dr. Gerald Niemi and the Natural Resources Research Institute for sharing

point-count survey data from the Minnesota Forest Breeding Bird Survey. These data are, in

a real sense, the source of my dissertation. Thanks likewise go to Dr. Lisa Schulte Moore and

the STRIPs project for sharing point-count distance-removal data with which to appraise my

distance-removal model.

I have been fortunate with my duo of co-advisors, who have diligently, patiently propelled

me along the multi-dimensional path that is modern-day statistics. To Philip, I am most

grateful for your sense of perspective, which orients my sense of proportion and which ways are



x

forward and up. To Jarad, I am grateful for your ceaseless energy and high standards. If ever

somebody praises me on the cleanliness of my code or the organization of my file directories,

the credit should transmit to you.

Lastly and most importantly, my love and deepest gratitude go to my wife Angie and

daughter Clare. The daily sacrifices of family before the altar of graduate school are understood

by those who have endured it. There is nothing I more eagerly anticipate than the return of

time with my family.



xi

ABSTRACT

In this disseration, we estimate abundance from removal-sampled animal wildlife point-

count surveys, focusing on models to account for heterogeneous detection probabilities. In con-

trast to many published models, our research treats individual times to detection as continuous-

time responses. Adopting this method enables us to ask questions that are impractical under

existing discrete-time models. We accomplish our analyses by using a parametric survival

analysis approach within the N-mixture class of hierarchical animal abundance models. In

Chapter 2, we construct models for removal-sampled data that allow detection rates to change

systematically over the course of each observation period. Most studies assume detection rates

are constant, but our analysis demonstrates this assumption to be very informative, leading

to biased and overly precise estimates. Non-constant models prove less biased with better

coverage statistics over a range of simulated datasets. In Chapter 3, we extend the continuous-

time modeling approach to distance-removal sampled surveys. We introduce a new model that

successfully integrates two subtly different existing mechanisms for modeling distance-removal

surveys: one that focuses on detecting available individuals and one that focuses on detecting

availability cues (e.g. bird calls). We articulate the distinctions between the two and place

them within current terminology for availability and perceptibility. Our new model accurately

estimates abundance and detection from datasets simulated via either mechanism, but models

that assume only one mechanism are often not robust to misspecification. In Chapter 4, we ap-

ply our model from Chapter 3 to six avian species monitored in removal- and distance-sampled

point-count surveys in Iowa agricultural fields. We articulate several ways in which the model

does not match data characteristics, and we identify priorities for developing this model in

order to make it more flexible and feasible.
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CHAPTER 1. INTRODUCTION

Statistical models for wildlife surveys must account for variations in detection probability

across individual site surveys in order to generate reliable estimates of species abundance (Pol-

lock et al., 2002; Nichols et al., 2009). To estimate detection probabilities, we decompose the

process of detection into two stages: an animal must make itself available to be detected by

producing a detectable cue (e.g. a movement or an audible call), and an observer conduct-

ing the study must perceive the available animal (Farnsworth et al., 2002; McCallum et al.,

2005; Nichols et al., 2009). Two methods that have proven useful in estimating these stages

separately are point-count removal sampling (Farnsworth et al., 2002) and distance sampling

(Buckland et al., 2001). Point-count removal sampled data contain times to first detection for

each observed animal. The pattern of these detection times provides information about how

often animals produce detectable cues. Distance sampled data contain distances from the ob-

server for each observed animal. The pattern of detection distances provides information about

the observer’s ability to perceive cues and also allows abundance estimation per unit area.

In this dissertation, we examine the statistical analysis of single-visit removal-sampled and

distance-removal-sampled point-count surveys. The statistical idea that motivates our work

is that removal-sampled times to detection should be modeled as continuous responses rather

than discrete, as is often done. This idea invites a parametric survival analysis approach, which

in turn facilitates our ability to ask new questions and formulate new models.

1.1 Point-count survey datasets

The models we present in this dissertation analyze single-species data from removal-sampled

and removal-distance-sampled single-visit avian point-count surveys. We draw upon two multi-
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species datasets: the Minnesota Forest Breeding Bird Project (MNFB) (Hanowski et al., 1995)

and the Science-based Trials of Rowcrops Integrated with Prairie Strips (STRIPs) at Iowa State

University. The MNFB dataset features 381 ten-minute survey periods conducted by trained

observers during which the first detection time for each bird is censored into nine intervals. This

relatively fine scale of interval-censoring is atypical for removal-sampled datasets but proves

invaluable for our purpose of estimating time-varying detection rates. The dataset also contains

coarsely interval-censored distances, which we do not use in our analyses. The STRIPs dataset

features 511 five-minute survey periods all conducted by the same observer. Detection times are

censored into five intervals, and distances are measured to the nearest meter with a laser range

finder. The possession of exact distances proves to be a computational advantage in applying

distance-removal models. Both datasets contain records about survey sites (e.g. habitat) and

observation conditions (e.g. time of day, wind conditions) which we use as covariates in our

models.

1.2 Continuous-time removal-only models

Historically, removal models assume both discrete time responses and constant rates of

detection (Moran, 1951; Seber, 1982; Farnsworth et al., 2002; Royle, 2004a). In our opinion,

these two assumptions have been mutually reinforcing. Observers typically censor detections

according to predetermined intervals, which may vary in length (Ralph et al., 1995). A standard

analysis subdivides the survey period into equal-duration intervals. For any individual animal

at a given survey, the probability of detection during any interval (given that it has not already

been detected) is assumed to be constant. However, there are many reasons to believe that

detection rates are not constant during point-count surveys (Alldredge et al., 2007a; Lee and

Marsden, 2008). Indeed, avian point-count surveys frequently exhibit elevated counts during the

first interval. Some models adopt an ad hoc approach to this pattern by specifying a separate

detection probability for just the first interval (Farnsworth et al., 2002; Efford and Dawson,

2009; Etterson et al., 2009), but this approach does not change the underlying assumption that

detection rates are constant across the remaining survey intervals.
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We approach removal-sampled detection times as fundamentally continuous responses

(Sólymos et al., 2013; Borchers and Cox, 2016) that follow a time-to-detection distribution

(TTDD). When observation protocols dictate interval-censored record-keeping, we can still

calculate interval-specific detection probabilities by integrating the TTDD accordingly, but the

very act of doing so encourages us to contemplate a variety of forms for the TTDD. So, beyond

the constant-rate default exponential distribution, we postulate TTDDs that follow gamma,

lognormal, and Weibull distributions.

In turn, the consideration of non-constant TTDDs causes a heightened awareness of the

roles that right-truncation and extrapolation play in removal analysis. Right-trunctation occurs

because animals not detected during the observation window are never detected and therefore

not known to exist. Indeed, this is the central question in removal sampling: how many

animals were never detected? Removal modeling addresses right-truncation by fitting a TTDD

to observed times and then extrapolating it into the unobserved period. The quality of that

extrapolation depends upon both: (i) how well the TTDD matches the observed pattern of the

data, and (ii) how well the TTDD matches the pattern of the ‘unobserved data’.

The modeling of non-constant detection rates in removal-only abundance estimation, and

our ability to fit TTDDs to both observed and unobserved detection times, is the subject matter

of Chapter 2.

1.3 Continuous-time distance-removal models

Unified modeling of removal- and distance-sampled data is a recent innovation (Farnsworth

et al., 2005; McCallum et al., 2005), and unified modeling within a hierarchical context that al-

lows for mixed effects is even more recent (Borchers et al., 2013; Sólymos et al., 2013; Amundson

et al., 2014; Borchers and Cox, 2016). To some degree, the approaches implemented in these

models reflect their split heritage. On one side are removal-inspired models based largely on

avian point-counts. They model the joint distribution of observed times and distances as a

multinomial response, reflecting the interval-censoring often used in collection of both data

types. On the other side are distance-inspired models based largely on shipboard marine mam-

mal line transects. They model distance as continuous and treat time mainly as a proxy for
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forward distance relative to the ship. The two model types likewise focus on different ranges

of animal behaviors and of habitats.

It is therefore unsurprising that the two model lineages differ in how they synthesize removal

and distance methods. In particular, with regard to an observer’s perception of animals in the

field, the two modeling approaches differ on the fundamental observational unit for percepti-

bility. Discrete-time models (Diefenbach et al., 2007; Sólymos et al., 2013; Amundson et al.,

2014) functionally emphasize the perception of available animals. Continuous-time models —

including Borchers and Cox (2016) and extension of our own work from Chapter 2 — func-

tionally emphasize the perception of availability cues produced by animals. Neither modeling

approach is wrong, but they embody different assumptions and yield differing inference.

In Chapter 3, we detail the differences between these model types with regard to definitions,

assumptions, and mathematics. We use simulation studies to demonstrate the differences. We

then compose a combined hierarchical distance-removal model that successfully integrates both

the discrete- and continuous-time approaches. Like its antecedents, the combined model can

incorporate mixed effects for abundance, availability, and perceptibility of animals according

to site-level and survey-level covariates and effects.

In Chapter 4, we test drive our new combined distance-removal model using point-count

survey field data. We identify limitations of the model with respect to data issues, and we

build upon the experience to prioritize future developments of the model.
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CHAPTER 2. ASSESSING THE IMPACTS OF TIME TO DETECTION

DISTRIBUTION ASSUMPTIONS ON DETECTION PROBABILITY

ESTIMATION

A paper submitted to the Journal of Agricultural, Biological, and Environmental Statistics

Adam Martin-Schwarze, Jarad Niemi, and Philip Dixon

Abstract

Abundance estimates from animal point-count surveys require accurate estimates of de-

tection probabilities. The standard model for estimating detection from removal-sampled

point-count surveys assumes that organisms at a survey site are detected at a constant

rate; however, this assumption can often lead to biased estimates. We consider a class

of N-mixture models that allows for detection heterogeneity over time through a flexibly

defined time-to-detection distribution (TTDD) and allows for fixed and random effects

for both abundance and detection. Our model is thus a combination of survival time-to-

event analysis with unknown-N, unknown-p abundance estimation. We specifically explore

two-parameter families of TTDDs, e.g. gamma, that can additionally include a mixture

component to model increased probability of detection in the initial observation period.

Based on simulation analyses, we find that modeling a TTDD by using a two-parameter

family is necessary when data have a chance of arising from a distribution of this nature.

In addition, models with a mixture component can outperform non-mixture models even

when the truth is non-mixture. Finally, we analyze an Ovenbird data set from the Chippewa

National Forest using mixed effect models for both abundance and detection. We demon-

strate that the effects of explanatory variables on abundance and detection are consistent

across mixture TTDDs but that flexible TTDDs result in lower estimated probabilities of

detection and therefore higher estimates of abundance.

Keywords: abundance; availability; hierarchical model; Markov chain Monte Carlo;

N-mixture model; point counts; removal sampling; Stan; survival analysis
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2.1 Introduction

Abundance estimates from animal point-count surveys require accurate estimates of detec-

tion probabilities. Removal sampling, where individuals are solely counted on their first capture,

provides one established methodology for estimating detection probabilities (Farnsworth et al.,

2002). A standard assumption in removal sampling is a constant detection rate throughout the

observation period, but this assumption is often unjustified (Alldredge et al., 2007a; Lee and

Marsden, 2008). In particular, animal behaviors such as intermittent singing in birds and frogs

or diving in whales (Scott et al., 2005; Diefenbach et al., 2007; Reidy et al., 2011), differences

in behavior across subgroups of animals (Otis et al., 1978; Farnsworth et al., 2002), observer

impacts on animal behaviors (McShea and Rappole, 1997; Rosenstock et al., 2002; Alldredge

et al., 2007a), and variations in observer effort, e.g. saturation or lack of settling down period

(Petit et al., 1995; Lee and Marsden, 2008; Johnson, 2008), can all lead to time-varying rates

of detection.

In this manuscript, we develop a model for scenarios where detection rates are not constant

over time. We analyze times to first detection as time-to-event data, as is done in parametric

survival analysis, defining a continuous random variable T for each individual’s time to first

detection with a probability density function (pdf) fT (t) and cumulative distribution function

(cdf) FT (t). We refer to the distribution of T as a time-to-detection distribution (TTDD).

One common strategy to deal with data that do not fit a constant-detection assumption is

to model the TTDD as a mixture of two distributions — a continuous-time distribution and

a point mass for increased detection probability in the initial observation period (Farnsworth

et al., 2002, 2005; Efford and Dawson, 2009; Etterson et al., 2009; Reidy et al., 2011). However,

this is not yet the standard (Sólymos et al., 2013; Amundson et al., 2014; Reidy et al., 2016).

We consider the choice of whether to include a mixture component in conjunction with TTDDs

with non-constant rates and apply the term mixture TTDD when the TTDD has a discrete

and continuous component.

Unlike most survival analyses, the number of individuals N present at a survey is unknown

and may be the primary quantity of interest. We embed the TTDD in a hierarchical framework
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for multinomial counts called an N-mixture model (Wyatt, 2002; Royle, 2004b), which is an

entirely different use of ‘mixture’ from the mixture models in the previous paragraph. For

our purposes, the N-mixture framework provides three clear benefits: 1) it handles counts

within a flexible multinomial data framework (Royle and Dorazio, 2006) which accords with

the interval-censored data collection that is customary in point-count surveys (Ralph et al.,

1995), 2) the hierarchical structure readily lends itself to including abundance- and detection-

related covariates and random effects (Dorazio et al., 2005; Etterson et al., 2009; Amundson

et al., 2014), and 3) for a Bayesian analysis, we can sample the posterior joint distribution

of N-mixture parameters straight-forwardly using Markov chain Monte Carlo (MCMC). The

N-mixture framework models abundance as a latent variable with a Poisson or other discrete

distribution and independently models detection probabilities. Several previous studies have

employed the N-mixture framework to analyze removal sampled point-count data (Royle, 2004a;

Dorazio et al., 2005; Etterson et al., 2009; Sólymos et al., 2013; Amundson et al., 2014; Reidy

et al., 2016).

Framing a model in terms of time-to-detection leads to two practical differences vis-a-vis

constant-detection models. First, in order to model covariate and random effects on detection,

we perform mixed effects linear regression on the log of the rate parameter as in Sólymos

et al. (2013), whereas most existing studies instead construct regression models on the logit

of the equal-interval detection probability. The latter is not possible when detection rates

are not constant. Second, because we can obtain interval-specific detection probabilities from

the TTDD by partitioning its cdf (Figure 2.1), we can directly model the data according to

their existing interval structure rather than subdividing the observation period into intervals of

equal duration. Indeed our model fits exact time-to-detection data, whereas existing constant-

detection removal models only approximate exact data by subdividing the observation interval

into a large number of fine equal-duration intervals (Reidy et al., 2011; Amundson et al., 2014).

Section 2.2 provides a description of the interval-censored time-to-detection avian point

count data under consideration. Section 2.3 introduces an N-mixture model with a generically

defined TTDD for estimating abundance from removal-sampled point-count surveys. Section

2.4 provides three simulation studies to assess the impact of TTDD choice on estimated detec-
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tion probability. Section 2.5 analyzes an Ovenbird data set under different TTDDs to determine

the impact of this choice on estimated detection probability and therefore estimated abundance.

2.2 Interval-censored point counts

Our analysis is motivated by avian point-count surveys in Chippewa National Forest from

2008-2013 as part of the Minnesota Forest Breeding Bird Project (MNFB) (Hanowski et al.,

1995). For our analysis, we focus on Ovenbird counts selected from one habitat type: sawtimber

red pine stands with no recent logging activity. Each stand had up to four sites with sufficient

geographical distance between sites to reduce or eliminate overlapping territories. This dataset

includes 947 Ovenbirds counted in 381 surveys at 65 sites with site-specific variables including

site age, stock density, and an indicator of select-/partial-cut logging during the 1990s.

Single-visit (per year) point-count surveys were conducted by trained observers at each site

once annually (weather permitting). Fourteen different observers conducted surveys during

the study period and 69% of surveys in our dataset involved observers in their first year at

the MNFB. Survey durations were 10 minutes, with times to first detection censored into nine

intervals: a two-minute interval followed by eight one-minute intervals. During each survey,

the Julian date, time of day, and temperature were recorded.

While we focus on the estimation of detection probability in avian populations, the approach

we describe is appropriate for point-count surveys of any species. The methodology allows the

analysis of data with 1) recorded first (possible censored) detection of each individual, 2) site-

specific explanatory variables, and 3) survey-specific explanatory variables.

2.3 Continuous time-to-detection N-mixture models

Before considering interval censoring and explanatory variables, we first present the sce-

nario of exact times to detections with no explanatory variables. We then incorporate interval

censoring and follow with inclusion of fixed and random effects for abundance and detection.
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Figure 2.1 Illustration of fitting mixture exponential (left) and mixture gamma (right) time–
to-detection distributions (TTDDs) to interval-censored removal-sampled observa-
tions (center). The mixture TTDD consists of a continuous TTDD (thick line)
plus a mixture component of first-interval detections (light gray rectangle), consti-
tuting γ and 1− γ proportions of the population, respectively. We estimate p(det)

as the proportion of the TTDD before the end of the observation period C, leaving
an estimated proportion 1− p(det) undetected.

2.3.1 Distributions for exact times to detection

Suppose that, for each survey s (s = 1, . . . , S), Ns individuals are present. Imagine an ob-

server could remain at the survey location until every individual is detected, recording the time

to detection tsb (for bird, b = 1, . . . , Ns) for each. Assuming detection times for all individuals

at a survey are independent, identically distributed according to a common time-to-detection

distribution (TTDD), we define Tsb as a random variable with cumulative distribution function

(cdf) FT (t) and probability density function (pdf) fT (t). In practice, times to first detection

are truncated due to a finite survey length of C, meaning each individual has detection prob-

ability p(det) = FT (C). The conditional distribution of observed detection times consequently

has pdf fT |det(t|det) = fT (t)/FT (C) for 0 < t < C, cdf FT |det(t|det) =
∫ t
0 fT |det(x|det)dx, and

instantaneous detection rate, or hazard function, h(t) = fT (t)/[1− FT (t)].

A common choice for TTDD is an exponential distribution, i.e. Tsb
ind∼ Exp(ϕ), which

imposes a constant first detection rate, i.e. h(t) = ϕ. By choosing another TTDD, we can allow

for a systematic non-constant detection regime. For example, to model an observer effect where:

(i) the observer’s arrival suppresses or stimulates detectable cues, but (ii) individuals acclimate
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and gradually return to constant detection, a gamma TTDD would be appropriate. Like the

gamma TTDD, Weibull and lognormal TTDDs offer the flexibility of a two-parameter form and

allow rates to increase or decrease during the survey. All three TTDDs may provide reasonable

empirical approximations of non-constant detection, though the shapes of the distributions

differ, potentially leading to differing inference. For instance, when detection rates vary across

individuals, the result is a marginal detection rate that decreases over time. Whether the

marginal rate is best approximated by a gamma, lognormal, Weibull, or some other TTDD

depends on just how rates vary across individuals.

To facilitate the later inclusion of fixed and random effects, we use the following rate-based

parameterizations: T ∼ Exp(ϕ), E[T ] = 1/ϕ; T ∼ Ga(α,ϕ), E[T ] = α/ϕ; T ∼ We(α,ϕ),

E[T ] = Γ(1 + 1/α)/ϕ; and T ∼ LN(ϕ, α), E[T ] = exp(α2/2)/ϕ. This parameterization of the

lognormal relates to the standard (µ, σ2) parameterization by ϕ = exp(−µ) and α = σ. The

exponential distribution is a special case of both the gamma and Weibull distributions when

α = 1. We employ a log link to model ϕ, and therefore our model is equivalent to a generalized

linear model with a log link on the mean detection time.

2.3.2 TTDDs in an N-mixture model

A basic N-mixture model describes observed survey-level abundance n(obs) with a hier-

archy where n
(obs)
s

ind∼ Binomial
(
Ns, p

(det)
)

and Ns
ind∼ Po(λ). We can decompose Ns into

observed and unobserved portions: n(obs)
ind∼ Po(λp(det)) and, independently, n

(unobs)
s

ind∼

Po
(
λ[1− p(det)]

)
. Although alternative distributions can be considered, e.g. negative bino-

mial, our experience with Ovenbird point counts suggests that, after accounting for appro-

priate explanatory variables, the resulting abundances are likely underdispersed rather than

overdispersed, and thus we will use the Poisson assumption here.
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The above definitions complete our exact-time homogenous-survey data model, consisting

of distributions for counts and observed detection times:

n(obs)s
ind∼ Po(λp(det))

p(ts) =
∏

b=1...n
(obs)
s

fT |det(tsb| det, α, ϕ) (2.1)

p(det) = FT (C|α,ϕ)

where ts is a vector of observed times at survey s.

2.3.3 Interval-censored times to detection

Due to the harried process of avian point counts, times to first detection are typically not

recorded exactly, but are instead censored into I intervals. Let Ci for i = 1, . . . , I indicate the

right endpoint of the ith interval then CI is the total survey duration and, letting C0 = 0,

the ith interval is (Ci−1, Ci]. Let nsi be the number of individuals counted during interval

i on survey s, n
(obs)
s =

∑I
i=1 nsi, and ns = (ns1, . . . , nsI). Assuming independence amongst

individuals and sites, we have ns
ind∼ Mult

(
n
(obs)
s ,ps

)
, where ps = (ps1, . . . , psI) and psi =

FT |det(Ci|det)− FT |det(Ci−1|det) =
∫ Ci

Ci−1
fT |det(t)dt, see Figure 2.1.

2.3.4 Detection heterogeneity across subgroups

It is common in avian point counts to observe increased detections in the first interval

relative to an exponential distribution. This is often understood to reflect unmodeled detection

heterogeneity across behavioral groups in the study population. Failure to account for such

heterogeneity in the constant-detection scenario leads to negative bias in abundance estimates

(Otis et al., 1978). To accommodate this empirical observation, many models of interval-

censored removal times define a TTDD with a mixture component to increase the probability

of observing individuals in the first interval (Farnsworth et al., 2002; Royle, 2004a; Farnsworth

et al., 2005; Alldredge et al., 2007a; Etterson et al., 2009; Reidy et al., 2011). We specify a

mixture TTDD with mixing parameter γ ∈ [0, 1], a point-mass during the first observation

interval, and a continuous-time detection distribution F
(C)
T (t). The mixture TTDD cdf is

defined: FT (t) = (1− γ) + γF
(C)
T (t) for t > 0. If γ = 1, the non-mixture model is recovered.
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2.3.5 Incorporating explanatory variables

As discussed in Section 2.2, explanatory variables are available for sites and for surveys.

Generally, we suspect that site variables, e.g. habitat, will affect abundance and survey vari-

ables, e.g. time of day, will affect detection probability. Thus, we allow for incorporating

explanatory variables on both the abundance and detection.

To incorporate explanatory variables on abundance, we model the expected survey abun-

dance λs with log-linear mixed effects, i.e. log(λs) = XA
s β

A+ZAs ξ
A where XA

s are explanatory

variables, βA is a vector of fixed effects, ZAs specifies random effect levels, and ξAj
ind∼ N(0, σ2A[j])

are random effects where A[j] assigns the appropriate variance for the jth abundance random

effect.

To incorporate explanatory variables on detection probability, we let the continuous portion

of the TTDD depend on the explanatory variables through the now site-specific parameter ϕs.

Specifically, we model log(ϕs) = XD
s β

D + ZDs ξ
D, where XD

s are explanatory variables, βD is a

vector of fixed effects, ZDs specifies random effect levels, ξDj
ind∼ N(0, σ2D[j]) are random effects

where D[j] assigns the appropriate variance for the jth detection random effect. For simplicity,

we assume the shape parameter α as constant across sites.

2.3.6 Estimation

For ease of reference, the final full model is provided in Equation (2.2) where the conditioning

of the TTDD cdf on α and ϕs is made explicit.

n(obs)s
ind∼ Po(λsp

(det)
s )

ns
ind∼ Mult(n(obs)s ,ps); ps = (ps1, . . . , psI)

p(det)s = FT (CI |α,ϕs)

ps1 =
[
(1− γ) + γF

(C)
T (C1|α,ϕs)

]
/p(det)s (2.2)

psi = γ
[
F

(C)
T (Ci|α,ϕs)− F (C)

T (Ci−1|α,ϕs)
]
/p(det)s

log(λs) = XA
s β

A + ZAs ξ
A; ξAj

ind∼ N(0, σ2A[j])

log(ϕs) = XD
s β

D + ZDs ξ
D; ξDj

ind∼ N(0, σ2D[j])
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We adopt a Bayesian approach and therefore require a prior over the model parameters. To

ease construction of a default prior for this model, we standardize all explanatory variables and

then construct priors to be diffuse within a reasonable range of values. Normal prior mean and

standard deviation (sd) for the abundance intercept was set at a median abundance of 3 birds

per site and a 95% probability of 0-14 birds present (counted and uncounted). Normal prior

mean and sd for the detection intercept were chosen so that, based on an intercept-only non-

mixture model with α = 1: (i) median prior detection probability was p
(det)
s = 0.50, and (ii)

95% of the prior detection probability was within p
(det)
s ∈ (0.01, 1.0). Normal priors for fixed

effect parameters were centered at zero with standard deviations matching the appropriate

intercept term. All standard deviations and α were given half-Cauchy priors with location 0

and scale 1 for the untruncated Cauchy, and the mixture parameter γ was assigned a Unif(0,1)

prior in mixture models. All scalar parameters were assumed independent a priori.

We fit the models by MCMC sampling using the Bayesian statistical software Stan, imple-

mented via the R package rstan version 2.8.0 (Stan Development Team, 2016). We discarded

half of the iterations as warmup and thinned by 10. We monitored convergence of the MCMC

chains using Geweke z-score diagnostics (Geweke et al., 1991) and reran models if lack of con-

vergence was indicated by a non-normal distribution of the z-scores or if the effective sample

size for any parameter was below 1000. The number of iterations used depended on the model

and is detailed later. For most models, we accepted Stan defaults for initial values; however,

gamma and Weibull models sometimes failed to run unless care was taken in the specification

of initial values.

2.4 Simulation studies

We conducted three simulation studies to explore the behavior of models with non-constant

TTDDs. The first study compares mixture vs non-mixture models. The second study compares

the TTDD families. In the first two studies, we utilized intercept only models to focus attention

on robustness of the TTDD choice in the most simple of scenarios. For the third study, we

included fixed and random effects for both abundance and detection and again compared the
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distribution families. In all simulation studies, we focused on accuracy in estimation of p(det)

which then translated into estimation of abundance.

In the following analyses we distinguish two categories of purely continuous TTDDs: peaked

and nonpeaked. Detection rates h(t) of peaked distributions generally increase over time, while

detection rates of nonpeaked distributions generally decrease over time. More formally, we

define a peaked TTDD as having a mode greater than zero (or C1 for lognormal) while a

nonpeaked TTDD has a mode of zero (or less than C1), but we consider exponential TTDDs

to be neither peaked nor nonpeaked.

2.4.1 Mixture versus non-mixture TTDDs

To assess the need for incorporating a mixture component to increase the probability of

detection in the initial interval as discussed in Section 2.3.3, we simulated 5600 intercept-only

datasets: 100 replicates using 4 values of p(det) (0.50, 0.65, 0.80, and 0.95) from each of 14

TTDDs (each combination of peaked/nonpeaked, mixture/non-mixture, and exponential/gam-

ma/Weibull/lognormal, where exponential models are considered nonpeaked). We chose true

parameter values (Table A.1) and the number of surveys (381) to mimic the Ovenbird analysis

(Section 2.5). In particular, we set parameters such that (i) in nonpeaked models, 70% of

detected individuals were observed during the first two minutes, and (ii) in peaked models, the

detection mode for ‘hard to detect’ individuals occured at 5 minutes.

We fit each dataset with two models: mixture and non-mixture versions of the distribution

family, e.g. exponential, used to simulate the data. For each dataset-analysis combination, we

sampled > 90,000 iterations which showed no evidence of lack of convergence according to the

Geweke diagnostic and reached over 1,000 effective samples for all parameters.

For each dataset and inference model combination, we summarize the analysis across sim-

ulations by averaging the posterior median and reporting coverage for 90% credible intervals.

If analyses are providing reasonable estimates of p(det), we expect the average median to be

unbiased and the coverage to be close to 90%. Figure 2.2 provides a summary of these quanti-

ties. When a mixture model is used to simulate the data (lower row of plots), there is clearly

a benefit to using a mixture model for inference. Using a non-mixture model for inference,
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Figure 2.2 Comparisons of mixture and non-mixture TTDDs. Left : Average posterior me-
dian detection probabilities across 100 replicate simulations. Dashed lines show
unbiased estimation. Right : Coverage of 90% credible intervals across 100 repli-
cate simulations. Dashed lines depict a 95% range of observed coverage that is
consistent with nominal coverage. Rows: Data simulated from non-mixture (up-
per) or mixture (lower) TTDDs. Columns: Data simulated from nonpeaked (left),
exponential (center), or peaked (right) TTDDs. Each inference model was fit only
to datasets from the same TTDD family (e.g. lognormal to lognormal).

the credible interval coverage is near zero for most models with the exponential model overes-

timating p(det) and the other models underestimating. When a non-mixture model is used to

simulate the data (upper row of plots), there are no clearly discernable differences between the

ability of a non-mixture or mixture model to capture p(det). These results support the general

default use of a mixture model over a non-mixture model.

For nonpeaked datasets, estimates of p(det) from the same TTDD inference model differed by

only 1-5% between p(det) = 0.50 and p(det) = 0.65 simulations (Tables A.3 to A.6), and credible

intervals had roughly the same widths. This suggests that, when data are nonpeaked with true

detection probabilities less than 65-80%, the patterns of detections over time are insufficient

for distinguishing between moderate and low values of p(det). In these cases, mixture inference

models estimated higher detection probabilities than did non-mixture models.
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Figure 2.3 Representative examples of posterior distributions for p(det) (left panel) and sur-
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TTDDs. True detection probabilities vary by row and are shown for comparison
(dashed vertical line). Inference models are either exponential mixture (light gray)
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2.4.2 Constant vs. non-constant detection mixture TTDDs

The previous section addressed model mis-specification in terms of the mixture component.

Now we turn to model misspecification of the distribution family. We simulated 100 replicates

of intercept-only datasets from the 7 different mixture TTDD models using the same detection

probabilties and parameters as in the previous section, and we fit them with mixture models

from each of exponential, gamma, lognormal, and Weibull families.

Figure 2.3 illustrates representative examples of posterior distributions for p(det) and site-

level log(abundance) when data and models were from the exponential and gamma mixture

TTDDs. Posterior distributions under exponential inference models accurately captured true

detection probabilities when the simulation model was exponential, but they overestimated (un-

derestimated) detection probabilities when the simulation model was nonpeaked (peaked). In

contrast, gamma family posteriors, which have added flexibility from having a shape parameter,

accurately captured the truth in most scenarios although with increased uncertainty.
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Figure 2.4 Comparisons of TTDDs across families. Left : Average posterior median detec-
tion probabilities across 100 replicate simulations. Dashed lines show unbiased
estimation. Right : Coverage of 90% credible intervals across 100 replicate simu-
lations. Dashed lines depict a 95% range of observed coverage that is consistent
with nominal coverage. Rows: Data simulated from mixture exponential, gamma,
lognormal, or Weibull TTDDs. Columns: Data simulated from nonpeaked or ex-
ponential (left) or peaked (right) TTDDs. All data and inference models used
mixture TTDDs.

Figure 2.4 and Tables A.7 to A.10 summarize posterior estimates of p(det) and coverage from

90% credible intervals across all TTDD families. The poorest estimation of p(det) occurred for

the exponential inferential model when the data simulation model had a peak, because the two

parameters (rate and mixing parameter) did not provide enough flexibility to adequately fit a

TTDD with both an initial increase and a delayed mode. As a result, the exponential model

underestimated the actual detection probability. In contrast, the exponential model typically

overestimated detection probability for nonpeaked simulated data. However, exponential model

estimates were both less biased and more precise when the data actually derived from an

exponential mechanism.

When comparing the different three-parameter TTDDs, model misspecification was not as

serious an issue because the models could better account for the patterns in time to detection.

Even so, estimates of p(det) amongst the three models differed by as much as 0.15. As in the

previous simulation study, estimates of p(det) from nonpeaked datasets changed little as true
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values of p(det) decreased below 65-80%. For nonpeaked datasets, gamma TTDDs produced

larger estimates of p(det) than did Weibull TTDDs, with lognormal TTDDs producing the lowest

of all. For peaked datasets, the order of Weibull estimates were larger than gamma estimates.

Our results do not favor the use of one of these TTDDs over the others.

2.4.3 Models including covariates and random effects

The previous sections studied effects of time to detection assumptions in the context of

no explanatory variables. We now incorporate fixed and random effects for abundance and

detection to ascertain whether models differ in their estimates of effect sizes. We simulated

data from each of the 7 mixture TTDDs and fit models from exponential, gamma, lognormal,

and Weibull mixture models.

We simulated data using the median posterior parameter estimates obtained in the analysis

of Ovenbird data in Section 2.5. As those models differed in their estimates of p(det), so the

simulated datasets featured different true values of p(det). Because fitted Ovenbird models did

not yield peaked distributions, we simulated peaked data by: (i) using the same intercepts,

shape parameters, and mixing parameters as for peaked data (p(det) = 0.80) in previous simu-

lations, (ii) using median covariate and random effects from the Ovenbird estimates, and (iii)

scaling the detection intercept and random effect to achieve true detection probabilities ≈ 0.8

with a detection mode at 5 minutes. See Table A.2 for actual parameter values. Because of

the difficulty in integrating random effects over all sites, approximate posterior distributions

for the study-wide marginal p(det) were obtained by simulating data from each MCMC sample

and calculating the proportion of simulated Ovenbirds that were observed.

Computation times for this simulation study were much greater than for the other studies

because partitions of the cdf, e.g. F
(C)
T (Ci|α,ϕs), had to be calculated separately for every

survey; also, sampling often required 2-8 as many iterations. Average times for exponential,

lognormal, Weibull, and gamma model fits were 2.6, 5.1, 5.3, and 25+ hours, respectively, as

compared to only 2.0, 3.0, 3.3, and 5.3 minutes for the intercept-only models. Due to the

computation times involved, we fit each model only once.
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The results from this simulation are qualitatively similar to the Ovenbird analysis (Figure

2.5) and thus we only briefly review the results here and provide the corresponding figures and

tables in Appendix A. Patterns in posterior estimates of overall detection probabilities with

respect to family TTDD forms were largely the same as in the previous simulation studies for

appropriate values of p(det) – the inclusion of explanatory variables did not make models more

robust to violations of constant-detection assumptions (Figure A.1). Posteriors for abundance-

related fixed and random effects were the same regardless of which TTDD was assumed (Ap-

pendix A and figures therein). Posteriors for the mixing parameter γ and detection-related

fixed and random effects were the same across gamma, lognormal, and Weibull mixture models

but were narrower and location-shifted for the exponential mixture model.

2.5 Ovenbird analysis

We fit the Ovenbird dataset with exponential, gamma, lognormal, and Weibull mixture

models. For the abundance half of our model, we used four covariates plus two random effects.

The covariates were: (a) site age, (b) survey year, (c) an indicator of whether the site stock

density was over 70%, and (d) an indicator of whether the site experienced select-/partial-cut

logging during the 1990s. We associated random effects with each survey year and each stand.

For the detection half of our model, we used covariates for: (a) Julian date, (b) time of day,

(c) temperature, (d) an indicator of whether it is the observer’s first year in the database,

and (e) an interaction between (a) and (d) to approximate a new observer’s learning curve.

We associated random effects with each observer. Preliminary model fits did not support

the inclusion of quadratic terms for any detection covariates. We centered and standardized all

continuous covariates prior to fitting models. We ran chains 250,000-375,000 iterations; Geweke

diagnostics showed no indication of lack of fit, and effective sample sizes were over 1000 for all

parameters.

Figure 2.5 presents posterior medians and credible intervals for model parameters, overall

detection probability p(det), and the logarithm of total Ovenbird abundance. Estimates for the

shape parameter α from the gamma and Weibull models are consistent with the data arising
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from an exponential distribution, although the uncertainty on this parameter remains relatively

large.

Abundance covariate coefficient estimates were virtually the same across all models. The

95% credible intervals for two of the abundance parameters (site age and logging) do not

contain zero, thereby suggesting notable effects. Select- and partial-cut logging events of the

1990s depressed local Ovenbird abundance during the study perior to roughly 25-50% of the

abundance for unlogged sites. Credible intervals for site age coefficient indicate that each decade

of age increases abundance from 1.5-13%. Credible intervals for detection parameters do not

indicate significant effects, after adjusting for the other predictors, for any of the included

predictors.

In spite of the similarity of effect parameter estimates, the posterior distributions for de-

tection probability and abundance differ greatly between the exponential and non-exponential

models. It is clear that the assumption of constant detection leads to much higher and more

precise estimates of detection than would be obtained if we are unwilling to make that assump-

tion.

2.6 Discussion

We formulated a model for single-species removal-sampled point-count survey data that

allows for non-constant detection rates. The model accommodates both interval-censored and

exact times to detection. Our model adopts a time-to-event approach within a hierarchical

N-mixture framework, and it allows times to first detection to be modeled according to flexibly

defined TTDD families. Our results show that non-constant TTDDs can return reasonable

estimates of detection probabilities across a variety of time-to-detection data patterns, whereas

traditional constant-rate TTDDs return biased and overly precise estimates when data deviate

from the constant-rate assumption, even when they include a mixture for heterogeneity across

groups. Because the exponential TTDD is a special case of both gamma and Weibull TTDDs,

we can interpret the differences in estimation between models as resulting from the information

conveyed by the assumption of constant detection.
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Figure 2.5 Posterior medians (black dots) with 50% (wider line) and 95% (narrowerline) cred-
ible intervals for the mixing parameter (γ), shape parameter (α) as well as abun-
dance (A) and detection (D) fixed effects and random effect standard deviations.
Posteriors are also available for the overall probability of detection and the abun-
dance across all sites.

We have additionally demonstrated for non-constant models the utility of using a mixture

TTDD formulation. Inference models with a mixture component are accurate under most

scenarios whether the data have a mixture or not, whereas inference models without the mixture

can be badly biased when the data do feature a mixture.

If the estimation of effect parameters and the roles of explanatory variables are the primary

interest, then our results suggest that the exact choice of TTDD may not be important. Abun-

dance effect estimates are similar regardless of the chosen TTDD. Detection effect estimates,

while conditional on the mixing parameter γ, are similar across all mixture non-exponential
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TTDDs. These findings may well not hold if the same covariate is modeled in both abundance

and detection models (Kéry, 2008).

If the estimation of abundance is the primary interest, then the choice of TTDD has large

consequences, and we may reasonably ask when removal sampled point-count surveys are ad-

equate. Based on our results, we would be skeptical of abundance estimates that indicate a

nonpeaked TTDD with median posterior estimates of p(det) below 0.75 (using a mixture Weibull

as a yardstick). Reduced model performance in the presence of low detection probabilities is

common among abundance models. We recommend the discussion in Coull and Agresti (1999),

elaborating key points here. The essential problem is a flat log-likelihood. For single-pass sur-

veys, we cannot rely on repeated counts to improve our estimates. Instead, the strategy of

removal sampling is to use the observed pattern of detection times to estimate the proportion

of individuals that would be detected if only the observation period lasted longer. As such, it is

entirely reliant upon extrapolation based on an accurate fit of fT |det(t|det). When true detec-

tion probabilities are low, fT |det(t|det) for nonpeaked data becomes flat. Such a flat observed

pattern provides little information and is well approximated by a wide variety of TTDDs, which

vary greatly in their tail probabilities. An assumption of constant detection limits the shape

of fT |det(t|det) and thereby constrains uncertainty but at the cost of potentially sizable bias.

Just as the exponential TTDD is a special case of the two-parameter gamma and Weibull

TTDDs, so all four TTDDs in our analysis are special cases the three-parameter generalized

gamma distribution. A generalized gamma TTDD encompasses a diversity of hazard functions

(Cox et al., 2007), eliminating the need to restrict analysis to lognormal, gamma, or Weibull

TTDDs and the tail probabilities they imply. However, maximum likelihood estimation of

the generalized gamma has historically suffered from computational difficulties, unsatisifactory

asymptotic normality at large sample sizes, and non-unique roots to the likelihood equation

(Cooray and Ananda, 2008; Noufaily and Jones, 2013). It may well be possible to implement our

model with a generalized gamma TTDD, but especially when we consider the right-truncation

of data from point-count surveys, we think model convergence would not be a trivial problem.

Study design can address some issues associated with non-constant detection. In theory,

longer surveys can improve estimation of the unsampled tail probability, but the longer the
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survey lasts, the greater the risk that individuals enter/depart the study area or are double-

counted, which violates the removal sampling assumption of a closed population (Lee and

Marsden, 2008; Reidy et al., 2011). Observer effects on availability rates can be mitigated

by introducing a settling down period but at the potential cost of a serious reduction in total

observations (Lee and Marsden, 2008). An alternative to removal sampling is to record complete

detection records (all detections for every individual) instead of just the first (Alldredge et al.,

2007a); however, this may not be feasible in studies like MNFB where many species are observed

simultaneously

Versions of time-varying models have been described for trap-based removal sampling and

continuous-time capture-recapture. Time variation has been modeled through a non-constant

hazard function (Schnute, 1983; Hwang and Chao, 2002), a randomly varying detection prob-

ability across trapping sessions (Wang and Loneragan, 1996), and constant detection proba-

bilities that vary randomly from individual to individual (Mäntyniemi et al., 2005; Laplanche,

2010). Most of these approaches resulted marginally in a decreasing (nonpeaked) detection

function over time. Their results generally echo what we have presented here. Schnute (1983)

found that the equivalent of a mixture exponential adequately described their data. Wang and

Loneragan (1996), Hwang and Chao (2002), and Mäntyniemi et al. (2005) all found constant-

detection models to be flawed, producing underestimates of abundance and too-narrow error

estimates; these resulted in inadequate coverage and also overstatement of effect significance.

Point-count survey data often include the recorded distance between observer and detected

organism. Because our focus has been on modeling variations in detection rates during the

survey period, we have not incorporated distance into our model. Consequently, our application

of a TTDD represents an averaging across distance classes, which induces systematic bias in

estimates of abundance (Efford and Dawson, 2009; Laake et al., 2011; Sólymos et al., 2013). To

be consistent with the continuous time-to-event approach, distance can be incorporated into the

detection model as an event-level modifier as is done in Borchers and Cox (2016). This approach

is distinct from earlier integrations of removal- and distance sampling, where distance has been

treated as an interval-/survey-level modifier (Farnsworth et al., 2005; Diefenbach et al., 2007;

Sólymos et al., 2013; Amundson et al., 2014). The differences between these implementations
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may impact estimates of detection and abundance, especially in the presence of behavioral

heterogeneity in availability rates across subgroups of the study population. This is an area of

ongoing exploration.

We recommend that time-heterogeneous detection rates be explicitly modeled in single-

species analyses involving removal-sampled point-count survey data where estimation of detec-

tion probability or abundance is a primary objective. The assumption of constant detection,

while computationally simple and reasonable as a null model, proves to be rather informative

and can result in pronounced bias. Meanwhile, the causes of non-constant detection – i.e.,

observer effects on behavior and systematic variations in observer effort – are both plausible

and not trivially discounted. It would be nice if the data itself could inform us whether con-

stant detection is a reasonable assumption; however, our preliminary efforts to diagnose this

assumption using deviance information criterion (DIC) and posterior predictive check statis-

tics have led to weak and sometimes erroneous findings. Development of such a diagnostic tool

would be useful, but given the limitations of first time-to-detection data, we are not confident

a reliable tool could be easily developed. We believe that more informative data collection,

such as complete time-to-detection histories and microphone arrays, offer more effective tools

for time-to-event modeling going forward.



25

CHAPTER 3. DEFINING AND MODELING TWO

INTERPRETATIONS OF PERCEPTION IN REMOVAL-DISTANCE

MODELS OF POINT-COUNT SURVEYS

Abstract

Removal and distance modeling are two common methods to adjust counts for imperfect

detection in point-count surveys. Removal modeling uses first detection times to estimate

how often animals are available to be detected. Distance modeling uses detection distances

to estimate perceptibility, the ability of an observer to detect available animals. Several

recent articles have formulated models to combine the approaches into a single removal-

distance framework. We observe that these models employ but do not distinguish between

two distinct interpretations of perceptibility one based on perceiving available individuals,

the other on perceiving availability cues. Both are correct in certain situations. We apply

Bayesian analysis of a hierarchical N-mixture model to simulated and actual avian point

counts. We show that the choice of perceptibility model affects bias and coverage in abun-

dance estimation, especially when animals are frequently available but hard to perceive. We

introduce a three-stage model for detection that incorporates availability and both kinds of

perceptibility. Our model is unbiased with nominal coverage for data simulated from either

perceptibility model.

Keywords: abundance; perceptibility; distance sampling; removal sampling; point

counts; Bayesian; N-mixture model; Stan

3.1 Introduction

Abundance estimation from animal point-count surveys requires accurate estimates of de-

tection probabilities; otherwise, estimates can be biased or can disproportionately represent

abundance across surveys. For animals present during the survey, the process of detection can
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be decomposed into two stages: first, an individual must make itself available by producing

some cue that can be detected, and second, the observer conducting the survey must perceive

the availability cue (Farnsworth et al., 2002; McCallum et al., 2005; Nichols et al., 2009). To

model the first stage, we can estimate the rate of availability events (cues) when the point-

count survey uses a removal sampling protocol in which times to first detection are recorded

for every individual observed (Farnsworth et al., 2002). For the second stage, when the survey

uses a distance sampling protocol, we can characterize the probability of perceiving an avail-

able individual based on its distance from the observer (Buckland et al., 2001; Buckland, 2004).

Removal-only analyses underestimate abundance per survey site, because they implicitly as-

sume all available individuals are detected. Distance-only models underestimate abundance,

because they imply that all individuals at the survey are available.

Several authors have recently outlined approaches for combining removal modeling and

distance modeling into a single framework (Farnsworth et al., 2005; McCallum et al., 2005;

Diefenbach et al., 2007; Borchers et al., 2013; Sólymos et al., 2013; Amundson et al., 2014;

Borchers and Cox, 2016). In reviewing these analyses, we have observed two distinct interpre-

tations for the perception stage of detection: one based on available individuals, the other based

on availability events. In a distance-only model, we would model both interpretations in the

same fashion, and their contributions to detection would be unidentifiable, but in a combined

removal-distance model, we can model them differently so that their contributions to detection

become identifiable. In this manuscript, we articulate a model for each of these interpretations

alone, demonstrate that the choice of model impacts estimation of abundance, and suggest a

three-stage detection model that incorporates the availability stage and both interpretations of

perception.

3.1.1 Two types of perceptibility

We illustrate the terminology in this section with a fictional survey of burrowing owls

(Athene cunicularia). Burrowing owls stand near their nest burrows most of the day and are

primarily observed visually (Thomsen, 1971; Conway and Simon, 2003). Imagine a single point-

count survey at which four owls are present. Owl A is inside its burrow where it cannot be
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detected. Owl B stands near its burrow where it can be detected by an observer in the right

location, but during this particular survey the observer happens to stand where the line of

sight between observer and owl is obstructed by vegetation or topography, and so the observer

cannot detect Owl B. Owl C stands in a location in the observer’s line of sight but the observer

fails to detect it. Owl D stands in the observer’s line of sight and is detected.

We reserve the term availability for the probability pa an individual at a survey produces

any detectable cue during the observation period. By convention, availability quantifies an

animal’s behavior and is not related to the observation process. As such, it cannot be a

function of distance to an observer, observer ID, observer fatigue, etc. We model the detection

process in continuous-time, so we frame availability as resulting from distinct availability events,

the frequency of which is expressed through animal’s availability rate (Borchers and Cox, 2016;

Martin-Schwarze et al., 2016). Availability rates quantify the frequency and conspicuousness of

either discrete events (e.g. a bird call in an auditory survey) or continuously available animals

(e.g. an owl standing near its nest). In our example, Owl A is not available, because it produces

no detectable cues during the survey. Owls B, C, and D are all available, because they produce

detectable cues — i.e, it is a visual survey and they are outside their burrows where they could

be seen by an observer in the right position.

Although Owl B is available, there is no way the observer can detect Owl B because of visual

obstructions. Similarly, in an auditory survey, an observer cannot detect an animal located in

an acoustic shadow. Such animals are in undetectable states. An animal’s state characterizes

whether its availability events can possibly be detected by the observer conducting the survey.

Its state results from the observation process — usually its location vis-à-vis the observer

— not from animal behavior. We introduce the term state perceptibility for the probability

that an available animal is in a detectable state. We expect state perceptibility to be a non-

increasing function of an animal’s distance from the observer. In our example, Owl B is not

state perceptible, but Owls C and D are both state perceptible.

Available animals in a detectable state can still go undetected if the observer fails to perceive

them. For instance, Owl C produces availability cues and is detectable, but the observer does

not see it. Likewise, a detectable bird can go uncounted if it sings but is not heard during
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an auditory survey. Detection requires that the observer perceives at least one of the animal’s

availability events. We introduce the term event perceptibility for the probability that any

given availability event for a state perceptible individual is detected. Like state perceptibility,

event perceptibility is a non-increasing function of distance from the observer. Owls C and D

are both available and in detectable states, but Owl C goes undetected because the observer

fails to perceive any of its availability events, while Owl D does get detected when the observer

perceives one of its availability events.

Following convention, we define perceptibility as the probability pp an observer detects an

individual that has made itself available at any time during the survey (Farnsworth et al., 2002;

McCallum et al., 2005; Nichols et al., 2009). ‘Perceptibility’ thus encompasses both state and

event perceptibilities. It follows that detection probability during a survey is the product of

availability and perceptibility: p(det) = papp.

3.1.2 Comparing state and event models

In reviewing published removal-distance models, we find inconsistency across models for

perceptibility and generally the implementation of just one type of perceptibility. Some studies

model perceptibility using state perceptibility (Diefenbach et al., 2007; Sólymos et al., 2013;

Amundson et al., 2014) while others employ event perceptibility (Hayes and Buckland, 1983;

Farnsworth et al., 2005; McCallum et al., 2005; Borchers et al., 2013; Borchers and Cox, 2016).

With the exception of Borchers et al. (2013), authors do not distinguish between the two per-

ceptibilities, and only the model in Borchers and Cox (2016) is sufficiently generic to encompass

both. We use the terms state model and event model to denote models employing solely state

perceptibility or event perceptibility.

State and event models can lead to different inference. The main difference manifests in

the joint distribution for detected times and distances (Figure 3.1). In a state model, the

distributions of detected times and distances prove to be independent. Indeed, a defining

characteristic of state models is that availability can be estimated from detection times alone

and perceptibility can be estimated from detection distances alone. However, in an event model

the distributions of detected times and distances are not independent with the result that the
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Figure 3.1 Theoretical conditional densities from state and event models with 92% availability
and 50% state or event perceptibility (depending on plot). Plots show a 10-minute
survey scaled so that the maximum distance allowed in the analysis is one. Upper
left: State model distribution of observed distances conditioned on detection at
time t. Because of independence between detected distances and times, the density
is the same across all times. Upper right: Event model distribution of observed
distances conditioned on detection at time t. Average detection distance increases
over time. Lower left: State model distribution of detection time conditioned on
distance r. Because of independence, the density is the same across all distances.
Lower right: Event model distribution of detection time conditioned on distance
r. Average detection time increases with distance.

average detected distance increases with time and vice versa. It is not possible to separately

estimate availability and perceptibility in an event model.

Both state and event models can be understood as special cases of a three-stage combined

model featuring availability and both perceptibility types. The state model is equivalent to a

combined model when event perceptibility is one – i.e., availability cues from state perceptible

animals are always perceived. The event model is equivalent to a combined model when state

perceptibility is one – i.e., all available animals are state perceptible.

Section 3.2 describes the distance- and removal-sampled point-count survey data that mo-

tivate our model. Section 3.3 formulates state, event, and combined models to estimate abun-
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dance for these data. Section 3.4 provides two simulation studies to assess the relative perfor-

mance of each model.

3.2 Distance-removal data

Though we analyze only simulated data in this chapter, our models are motivated by avian

point-count surveys in Chippewa National Forest from 2008-2013 as part of the Minnesota

Forest Breeding Bird Project (MNFB) (Hanowski et al., 1995). We applied a removal-only

model to this dataset in the previous chapter, but it also contains coarsely binned distance

data. The essential data structure we consider is removal- and distance-sampled avian point-

count surveys. For simplicity, we assume detection times and distances are recorded precisely

and that surveys last 10 minutes. Though our simulations do not involve observers-recorded

covariates for habitat and observation conditions for each survey, we describe and code the

models to incorporate them.

3.3 Distance-removal models based on three different joint distributions

for observed times and distances

We formulate state, event, and combined models for removal-sampled point-count surveys

that include data for uncensored detection times and distances. These models follow a hierar-

chical N-mixture framework (Royle, 2004b). The models share a common form for the posterior

distribution at any survey, given the same availability rate for all individuals:

p(θ|n(obs), r, t) ∝ p
(
n(obs)|θ, p(det)

)(∏
i

f (ri, ti|θ, p(det))

)
p(θ) (3.1)

where n(obs) is the count, r = r1, . . . , rn(obs) and t = t1, . . . , tn(obs) are distances and times

to first detection with joint distribution f(·), p(det) is the marginal probability of detection

across possible distances at the survey, and p(θ) are priors for the Bayesian analysis of the

model parameters θ. While p(det) is a deterministic function of θ, we write it explicitly to

highlight its role in calculations. Thus, the posterior density consists of three components:

(i) the probability of the observed count, (ii) the joint probability of distances and times
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conditioned on detection, and (iii) the priors. The three models share the same approach for

the first and third components, but they differ in their calculations of the second component

and of p(det). In the following sections, we derive these three components and p(det) for each

of the state, event, and combined models; further, we explain how to simulate data from each

model.

3.3.1 Modeling counts

Consider s = 1, ..., S surveys at which local abundance follows a Poisson distribution Ns ∼

Po(λs), where λs is the expected survey abundance. An observer visits each location, conducts

a survey of duration C, and records the count of individuals observed n
(obs)
s ≤ Ns, as well as

the distance and first time at which each individual is detected. Each individual present at

the survey i = 1, ..., Ns has its own probability of detection psi(det|rsi), which is a function

of its distance from the observer rsi and a survey-specific instantaneous rate of availability

ϕs(t). We assume that individuals do not move during the survey. We can calculate a survey-

specific average probability of individual detection ps(det) by integrating psi(det|rsi) over the

distribution of individual distances from the observer fR(r). Given the Poisson abundance and

independent detection events, it follows that the distribution for observed counts is n
(obs)
s ∼

Po (λsps(det)).

3.3.2 Modeling detection: state model

A state model features a distance-dependent survey-specific state perceptibility gSs (r) de-

fined as the probability an individual is state perceptible given that it has been available at

any time during the survey. Because the state model assumes event perceptibility is one, gSs (r)

is also the probability of detecting an individual given it has been available during the survey.

By definition, gSs (r) is not affected by the individual’s rate of availability. The probability of

detection for an individual at distance r is then ps(det|r, C) = gSs (r)pa(C) where pa(C) is the

availability according to: pa(C) = 1 − exp
(
−
∫ C
0 ϕs(t)dt

)
. It follows that the probability of
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detection at a survey of duration C is:

ps(det) =

∫ w

0
ps(det|r, C)fR(r)dr = pa(C)

∫ w

0
gSs (r)fR(r)dr (3.2)

where w is the maximum distance used in the analysis. The joint distribution of detected

distances (0 < r < w) and times (0 < t < C) that gives rise to ps(det) can be solved:

fR,T |det(r, t|det) = fR(r)fT |R(t|r)
/
ps(det) = fR(r)

∂

∂t
(ps(det|r, t))

/
ps(det) (3.3)

=
fR(r)gSs (r)∫ w

0 gSs (r)fR(r)dr

ϕ(t) exp
(
−
∫ t
0 ϕ(u)du

)
pa(C)

(3.4)

= fR|det(r|det)fT |det(t|det) (3.5)

This joint distribution has two noteworthy aspects. First, it is the independent product of

the densities for detected distances and for times to first detection; this therefore allows us to

model detection distances and times separately. Second, when conditioning on detection, the

distribution of times to first detection fT |det(t|det) is equivalent to the conditional distribution

of times to first availability. In the event model, the joint distribution fR,T |det(r, t|det) shares

neither of these characteristics.

3.3.3 Modeling detection: event model

In an event model, gEs (r) defines a distance-dependent survey-specific probability of detect-

ing any given availability event. We assume detections of events from the same animal are

independent. From the availability rate and event perceptibility, we calculate the rate of detec-

tion ϕDs (r, t) = gEs (r)ϕs(t). Applying standard survival analysis results, the joint distribution

of distances and first times to detection (0 < t <∞) given rate of availability is:

fR,T (r, t) = fT |R(t|r)fR(r) =

[
ϕDs (r, t) exp

(
−
∫ t

0
ϕDs (r, u)du

)]
fR(r), (3.6)

The average probability of detection for an individual at the survey becomes:

ps(det) =

∫ w

0

∫ C

0
fR,T (r, t)dtdr =

∫ w

0

[
1− exp

(
−
∫ C

0
ϕDs (r, t)dt

)]
fR(r)dr. (3.7)

The distribution of detected distances and first times to detection is then fR,T |det(r, t|det) =

fR,T (r, t)/ps(det) for 0 < r < w and 0 < t < C. Due to the form of ϕDs (r, t) in the exponent,
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the joint distribution cannot be factored into independent distributions of distance and time.

Consequently, unlike with the state model, the distribution of first detection times is a function

of distance and is distinct from the distribution of first times to availability.

3.3.4 Modeling detection: combined model

We combine the components of event and state models to create a combined model con-

sisting of state perceptibility, availability, and event perceptibility. Functionally, the combined

model treats the rate of detection ϕDs (r, t) from the event model as a distance-dependent avail-

ability rate input to the state model. This is seen when we present the distributions for first

times to detection (0 < t <∞) conditioned on distance for each of the three models:

State: fT |R(t|r) = gSs (r)ϕs(t) exp

(
−
∫ t

0
ϕs(u)du

)
(3.8)

Event: fT |R(t|r) = gEs (r)ϕs(t) exp

(
−
∫ t

0
gEs (r)ϕs(u)du

)
(3.9)

Combined: fT |R(t|r) = gSs (r)gEs (r)ϕs(t) exp

(
−
∫ t

0
gEs (r)ϕs(u)du

)
(3.10)

From the above, given a distribution of distances fR(r), we calculate the survey-specific detec-

tion probability as ps(det) =
∫ w
0

∫ C
0 fT |R(t|r)fR(r)dtdr and the joint distribution of detected

distances and times as fT |R(t|r)fR(r)/ps(det) for 0 < r < w and 0 < t < C.

3.3.5 Simple scenario

We consider a simple scenario based upon the following assumptions: (i) a uniform dis-

tribution of individuals in space, which for circular point-count surveys translates to fR(r) =

2r/w2, r ≤ w; (ii) typical half-normal perceptibility functions gEs (r) = exp(−(r/wσEs)
2) and

gSs (r) = exp(−(r/wσSs)
2), where σEs and σSs are survey-specific parameters scaling the radius

of event- and state- perceptibilities relative to w; and (iii) rates of availability that are con-

stant over time ϕs(t) = ϕs. Applying these assumptions, we obtain the following survey-level

probability functions:
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State model:

fR,T |det(r, t|det) =
2r

w2
gSs (r)ϕs exp(−ϕst)

/
p(det) (3.11)

p(det) = σ2Ss
(
1− gSs (w)

)
(1− exp(−ϕsC)) (3.12)

Event model:

fR,T |det(r, t|det) =
2r

w2
gEs (r)ϕs exp

(
−gEs (r)ϕst

)/
p(det) (3.13)

p(det) = 1− σ2Es
[
E1

(
gEs (w)ϕsC

)
− E1 (ϕsC)

]
(3.14)

Combined model:

fR,T |det(r, t|det) =
2r

w2
gSs (r)gEs (r)ϕs exp

(
−gEs (r)ϕst

)/
p(det) (3.15)

p(det) =
2

w2

∫ w

0
rgSs (r)

(
1− exp

(
−gEs (r)ϕsC

)
dr
)

(3.16)

where E1(·) is an exponential integral function defined as: E1(x) =
∫∞
x e−u/u du. Neither

the exponential integral nor the integral in Equation (3.16) has an analytical solution. In our

models, we used a modified version of exponential integral calculations in Press (1992), and

we derived a series approximation to Equation (3.16) using integration by parts (see Equation

(B.29)).

3.3.6 Simulating from the models

The appropriate steps for simulating data from a combined model with known parameters

are: (i) sample local abundance Ns for each survey from p (Ns|λs, ps(det)), (ii) sample distances

rsi for each individual from fR(r), (iii) determine for each individual whether or not it is

state-perceptible using a Bernoulli
(
gSs (r)

)
draw, and then (iv) sample times tsi for each state-

perceptible individual from the event model formula for fT |R(t|r). Only mark as detected

the state-perceptible individuals with tsi < C. To simulate from a state model, substitute

gEs (r) = 1, which is equivalent to using the state model form of fT |R(t|r) in step (iv). To

simulate from an event model, simply skip step (iii), since the model assumes gSs (r) = 1.
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3.3.7 Modeling parameters

We model the expected abundance, the rate of availability, and both perceptibility distance

parameters (λs, ϕs, σEs, and σSs) on the log-scale, since all are constrained to be at least zero.

Although we do not use any forms of heterogeneity in this study, we can incorporate survey-level

covariates and effects for all of these parameters through log-linear mixed effects regression. For

instance, we may model event-perceptibility in avian counts as a function of vegetation density

and observer ID. We can handle these effects as fixed or random. The resultant regression

equation is: log(σEs) = XE
s β

E + ZEs ξ
E where XE

s are standardized covariates, βE is a vector

of fixed effects, ZEs specifies random effect levels, and ξEj
ind∼ N(0, τ2E[j]) are random effects with

[j] assigning the appropriate variance for the jth random effect.

We may additionally model latent detection heterogeneity among h = 1, ...,H subgroups

of individuals by using a mixture formulation (Farnsworth et al., 2002; Martin-Schwarze et al.,

2016). A simple way to model such heterogeneity is to define H different intercept parameters

for the modeling of the availability rate, each representing some proportion of the population

γh such that
∑

h γh = 1. We calculate p
(h)
s (det) and f

(h)
(R,T |det)(r, t|det) for each subgroup using

equations in Section 3.3.5 and then calculate survey-level detection probability as the weighted

sum across subgroups, e.g. ps(det) =
∑

h γhphs(det). In practice, H is no larger than 2.

3.3.8 Priors

We adopt a Bayesian approach and therefore require a prior over the model parameters.

We construct priors to be diffuse within a reasonable range of values, which are defined both

by typical counts and by the limits of model performance. Even under the best of conditions,

performance of unknown-N binomial abundance models such as N-mixture models is known to

deteriorate when detection probabilites fall below 30-40% (Olkin et al., 1981). Conversely, as

detection probabilities increase, abundance estimates approach the observed counts, and the

practical difference between estimating 99.00% detection versus 99.99% detection is frivolous.

We use datasets with average counts from 2 to 4 per survey. So, for the abundance intercept

term, we chose a Normal(1.5, 1) prior, which placed median prior abundance at 4.5 individuals



36

present per survey with 95% of prior probability between (0.63, 31.8). For the availability rate

intercept term, we chose a Normal(-1.8,1) prior, establishing a median prior availability rate

of 0.165 cues per minute with 95% prior probability between (0.023, 1.17). Converting these

values to availability over a 10-minute survey placed the prior median at 0.81 availability with

95% prior probability between (0.21, 1.00). For both perceptibility distance intercepts, we

chose Normal(0.35,1) priors with median at 0.79 state-perceptibility and 95% prior probability

between (0.05, 1.00); the median and confidence intervals were similar for event-perceptibility

at median prior availability. Combining the priors for availability and perceptibility led to

roughly uniform priors for detection probability in the event and state models. In the com-

bined model, the cumulative effect of all three availabilty/perceptibility priors was a median

detection probability of 0.35 with 95% prior probability between (0.015, 0.95). We recommend

standardizing covariates before analysis and using normal priors for fixed effects with mean

zero and a standard deviations matching the appropriate intercept term. All scalar parameters

were assumed independent a priori.

3.4 Simulation studies

We conducted a simulation study in two parts to explore how inference relies on the choice

of perceptibility model. The first part compared state and event models across an array of

detection probabilities and abundances. The second part examined the ability of a combined

model to fit data from either of the single-perceptibility models. In order to examine model

behavior under simple conditions, we used the scenario described in Section 3.3.5 meaning no

covariates, random effects, or detection heterogeneity between subgroups of individuals.

We simulated 50 replicates of 64 intercept-only datasets as follows: 2 models × 2 sample

sizes × 4 availabilities × 4 perceptibilities. We simulated data from either an event model or a

state model. The total number of observed individuals n(obs) was either 400 or 800 across 200

surveys such that the expected abundance was the same at all surveys. We used four levels of

the availability rate ϕ (0.51, 1.05, 1.77, and 3.91 events per survey) leading to availability pa =

0.40, 0.65, 0.83, or 0.98. We calculated levels of the perceptibility distance parameter σEs or

σEs to obtain average perceptibility pp = 0.40, 0.65, 0.83, or 0.98. Because these simulations
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are conditioned on an exact count total, they require slightly different simulation steps than

described earlier in Section 3.3.6 (see Appendix B for details).

We fit event and state models to each dataset by MCMC sampling using the Bayesian sta-

tistical software Stan, implemented via the R package rstan version 2.12.1 (Stan Development

Team, 2016). We sampled four MCMC chains of 6250 iterations thinned by a factor of 5,

discarding the first half as warmup. We diagnosed lack of convergence with a Gelman-Rubin

potential scale reduction factor R̂ < 1.1 (Gelman and Rubin, 1992), and we set a minimum

number of effective samples for all quantities (λ, ϕ, σEs, σSs, p(det)) of 1000.

To summarize analyses across replicates, we focused on survey abundance λ but also consid-

ered detection probability p(det), availability pa, and perceptibility pp. For each, we calculated

the average bias or percent bias of posterior median estimates and coverage for 50% and 90%

credible intervals. For direct comparison between models fit to the same dataset, we estimated

the difference in their expected predictive accuracy (∆elpd) using Pareto-smoothed importance-

sampled leave-one-out cross-validation (PSIS-LOO; Vehtari et al. (2017)) via the R package loo

(Vehtari et al., 2016). Comparing ∆elpd to its standard error yields a z-score which, under

assumptions of asymptotic normality, can provide support in favor of one model in a manner

related to Watanabe-Akaike information criterion (WAIC).

To compare the performance of combined models to event and survey models, we used

the same 50 replications of simulated datasets and fit combined models to the most extreme

availability/perceptibility pairs: (pa, pp) = (0.40, 0.40), (0.40, 0.98), (0.98, 0.40), (0.98, 0.98)

plus one intermediate pairing (pa, pp) = (0.83, 0.65). We used the same convergence and

effective sample size standards as before. For the low-perceptibility datasets, this required

longer MCMC sampling: 15,000 iterations thinned by a factor of 10.

3.4.1 Simulation results

We summarize posterior estimates of survey-level abundance across replicates. Summaries

of posterior estimates for pa, pp, and p(det) echo those for abundance and are presented in

Appendix B. Table 3.1 presents average percent bias of posterior median abundance on the

count scale, while Table 3.2 displays estimated coverage of 50% credible intervals. In both
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Figure 3.2 Caterpillar plot of posterior estimates for log(expected survey-level abundance)
from a representative complete replicate set of simulations. Vertical gray bars
show the true value, dots show the posterior median estimate, and horizontal lines
show 95% credible intervals. Rows show the availability and model used in data
simulation. Columns show the perceptibility used in data simulation.

tables, correctly specified models occupy the upper-left and lower-center quadrants. Figure 3.2

shows posterior median log-scale abundance and 95% credible intervals from a representative

complete replicate of simulations with n(obs) = 800.

The tables and figure all tell the same story. For correctly specified and combined models,

abundance estimates were generally unbiased, and coverage rates matched nominal levels; how-

ever, the models were not robust to misspecification. State models fit to event data resulted

in positively biased abundance estimates by as much as 71% often with low or zero coverage.

Event models fit to state data were negatively biased by as much as 44% also with low or zero

coverage. Except at the lowest availability or highest perceptibility, bias was consistently larger

than ±10%. Event model abundance estimates were always lower than state model estimates,

and combined model estimates were intermediate. The differences among models were most

pronounced when availability was high and perceptibility was low. These results demonstrate
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Table 3.1 Percent bias of median posterior expected abundance (calculated from the log-scale
bias averaged over 50 replicates). Rows indicate the availability and model used for
data simulation. Columns indicate the perceptibility used in data simulation and
the model used for inference. Total observations n(obs) = 800.

Perceptibility
Event model State model Combined model

Data Availability 0.40 0.65 0.83 0.98 0.40 0.65 0.83 0.98 0.40 0.65 0.98

E
ve

n
t

0.40 -14 -7 -7 -4 35 25 8 2 -6 -0
0.65 -2 -1 -1 2 62 39 16 7
0.83 0 -1 1 -0 69 40 19 5 3
0.98 0 -1 0 0 71 41 19 4 4 4

S
ta

te

0.40 -28 -22 -15 -2 -3 -0 -3 3 -16 1
0.65 -26 -21 -13 -1 -1 1 -1 4
0.83 -29 -24 -15 -2 -1 1 -2 3 -2
0.98 -44 -35 -17 -2 -0 -1 -2 2 -1 2

Table 3.2 Observed 50% coverage percentages for estimates of expected abundance based on
50 replicates with 800 observations per dataset. Rows indicate the availability and
model used for data simulation. Columns indicate the perceptibility used in data
simulation and the model used for inference. Coverage values between (36, 64) are
within a 95% confidence interval for nominal coverage.

Perceptibility
Event model State model Combined model

Data Availability 0.40 0.65 0.83 0.98 0.40 0.65 0.83 0.98 0.40 0.65 0.98

E
ve

n
t

0.40 50 56 52 34 18 22 46 48 64 42
0.65 36 52 44 58 0 0 24 48
0.83 44 50 50 66 0 0 6 46 60
0.98 56 62 76 100 0 0 0 28 40 28

S
ta

te

0.40 20 34 52 42 54 36 50 48 40 50
0.65 2 6 12 48 42 48 46 46
0.83 0 0 0 56 54 50 62 58 42
0.98 0 0 0 82 58 58 46 80 54 80

that the choice of event or state perceptibility model can lead to sizable differences in abun-

dance estimation, but combined models are flexible enough to accurately model data generated

from either mechanism.

Under two conditions, differences between models were less pronounced. First, when true

perceptibility was very high (98%), abundance estimates differed by no more than 6%. Second,

at very low availability (40%), coverage rates improved for all misspecified models owing to

substantially wider credible intervals and a decline in bias for the event data / state model

case. Combined and correctly specified models were negatively biased for the low availability,

low perceptibility scenario.
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Differences in ∆elpd between event and survey models were greatest when availability was

high and perceptibility was low (Figure 3.3). In these circumstances, especially for the 800-

observation datasets, ∆elpd signified the true model as more likely. However, the ability of

∆elpd to favor either event or state models was not consistently evident in many scenarios where

the magnitude of bias in abundance estimation was from 15% as high as 50%. Differences in

∆elpd between combined and correctly specified models did not consistently support one model

in any of the scenarios (Figure B.4).

Decreasing the total number of observations n(obs) from 800 to 400 increased posterior

uncertainty but did not appreciably worsen bias (Table B.7). Consequently, n(obs) = 400

estimates of coverage for misspecified models were closer to nominal rates in some scenarios,

but the general pattern of bias and coverage in relation to availability, perceptibility, and data

and inference models remained. The use of fewer observations decreased the difference in ∆elpd

between correctly and incorrectly specified models.

3.5 Discussion

We have distinguished between two approaches that have been used in modeling removal-

distance sampled data. In so doing, we have: (i) added to and refined availability-perceptibility

terminology, (ii) described and demonstrated the statistical distinction between these models,

and (iii) formulated a combined model that reconciles both approaches.

We have introduced new terminology distinguishing between two kinds of perceptibility —

state perceptibility based on perceiving available individuals and event perceptibility based on

perceiving availability events. In the process, we have revisited the definitions of availability

and availability rate. Event perceptibility is easily confused with the availability rate because

their similar roles in determining the effective detection rate
(
i.e., ϕD(r, t) = gE(r)ϕ(t)

)
. State

perceptibility is easily confused with availability, because animals that we consider to be avail-

able but not state perceptible – e.g. have a line of sight blocked by vegetation – may fit others’

definition of not being available (Marsh and Sinclair, 1989). In our definitions, we segregate the

roles of animal behavior and the observation process (Johnson, 2008). Availability quantifies

animal behavior and conspicuousness, including frequency and amplitude of availability cues,



41

pp = 0.4 pp = 0.65 pp = 0.83 pp = 0.98

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

400

800

400

800

400

800

400

800

400

800

400

800

400

800

400

800

E
vent

E
vent

E
vent

E
vent

S
tate

S
tate

S
tate

S
tate

p
a =

0.4
p

a =
0.65

p
a =

0.83
p

a =
0.98

p
a =

0.4
p

a =
0.65

p
a =

0.83
p

a =
0.98

−2.5 0.0 2.5 5.0 7.5 10.0−2.5 0.0 2.5 5.0 7.5 10.0−2.5 0.0 2.5 5.0 7.5 10.0−2.5 0.0 2.5 5.0 7.5 10.0
∆elpd / se(∆elpd)

N
um

be
r 

of
 O

bs
er

va
tio

ns

Figure 3.3 Model comparison using difference between misspecified model and true model
in expected predictive accuracy (∆elpd) relative to the standard error of that
difference. Dashed vertical lines show 95% confidence intervals for the hypothesis
that models are equally predictive – i.e., ∆elpd is zero. Large dots shows the
median value across all simulated datasets, while horizontal lines show the central
90% quantiles.

but it is not affected by the presence or location of an observer. Put differently, if a bird is

available in a forest, and nobody is there to hear it, then it is still available. State and event

perceptibilities quantify an observer’s ability to detect an animal or its availability cues, re-

spectively. The observer’s ability is affected by the distance between the animal and observer,

vegetation and lines of sight between animal and observer, the observer’s visual and auditory

acuity, observer fatigue, etc. Mathematics perhaps provides a cleaner definition — percepti-

bility effects change with distance from the observer whereas availability effects do not. We

believe that elucidation of these terms is helpful in conceptualizing distance-removal models.

We showed how the difference in defining perceptibility between state and event models

translates into a different joint distribution for observed times and distances. Further, we con-

trasted model inference under a range of availability-perceptibility scenarios and showed that

misspecification of the perceptibility type can lead to biased abundance estimates with poor
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coverage. State models can overestimate abundance from data featuring event perceptibility.

Event models can underestimate abundance from data featuring state perceptibility. Estimates

were most similar when either the perceptibility was high or the availability was low. These

findings conform with intuition. When perceptibility is high, then distance has little effect on

detection, and the definition of perceptibility should have little impact. We should expect to

encounter high perceptibility in analyses where the maximum distance allowed in the analysis

is small. When availability is low, then most animals are available only once during the survey

if they are available at all. An event model for data in which animals provide up to only one

detectable cue should behave the same as a state model in which animals are either perceived

when available or not perceived at all. We can likewise assert the converse: a state model

behaves like an event model in which animals are only available once. From this perspective,

intuition says that inference from state models and event models will most differ when avail-

ability is high, and the contrast will be sharpest when perceptibility is low. Our results support

this intuition.

State models should be most appropriate for removal-distance point-count surveys where

available animals are hard to miss but where detection probabilities decline with distance.

Visual studies of highly conspicuous animals in patchy landscapes may match this description.

Event models should be most appropriate for surveys where all animals are state-perceptible but

where detection of availability cues declines with distance. Auditory bird surveys may match

this description. However, we believe most surveys are a blend of the two, where some available

animals simply cannot be detected and where some availability cues will pass undetected.

We composed a new combined distance-removal model that incorporates both state and

event perceptibilities. In the combined model, detection becomes a four-stage process requiring:

presence, state perceptibility, availability, and perception of at least one availability event. We

demonstrated that the combined model accurately estimated abundance across a range of

availability-perceptibility scenarios, whether the data-generating mechanism was a state model

or an event model. We therefore recommend using a combined model for any distance-removal

analysis. In effect, a state model is just a special case of the combined model when all availability
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cues from perceptible animals are perceived, while an event model is just the special case when

all available animals are state perceptible.

The examples we have provided were designed to prove a concept under simplistic condi-

tions. Field data will feature heterogeneity at the survey-level in abundance, availability, and

each type of perceptibility. Our derivations and code already provide for the addition of het-

erogeneity. Section 3.3.7 explains how to incorporate covariates, survey-level random effects,

and subgroup heterogeneity into any of the state, event, or combined models. The Stan model

code in Appendix B already includes the necessary code.

Our models can be modified for interval-censored observations of time and/or distance. This

requires that we write the joint distribution of detected times and distances in Equation (3.1)

with a multinomial distribution. For a model with constant availability rate(s) and half-normal

perceptibility functions, we provide the necessary equations for each interval-censoring case in

Appendix B.
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CHAPTER 4. ESTIMATING AVIAN ABUNDANCE IN

ROW-CROPPED FIELDS WITH PRAIRIE STRIPS: ASSESSING A

DISTANCE-REMOVAL MODEL WITH TWO FORMS OF

PERCEPTIBILITY

Abstract

In the previous chapter, we devised an abundance model for removal- and distance-

sampled data that combines two kinds of perceptibility. In this chapter, we evaluate that

model by fitting it to field data for six avian species from Iowa State University’s STRIPs

project. The STRIPs project is designed to measure the impacts of prairie buffer strips

planted in row-cropped fields. The data cover 511 point-count surveys over 2 years and 11

locations with species counts from 220 to 1168 birds. We model fixed abundance effects

based on field type and year; availability rate as a function of Julian date, time of day, and

cloud cover; and event perceptibility affected by wind. We include random effects of location

on abundance and survey date on availability. Plus, we include subgroup heterogeneity

in availability. We found that agricultural fields containing strips of prairie vegetation

hosted greater abundance than rowcropped fields for 3 of 6 species. Time of day and

time of year affected availability rates for most species. Several data features violated

model assumptions, pointing to model limitations and directions for its improvement. These

included: pooling of auditory and visual detections, movement of animals away from the

observer, modeling for flocks, and incorporation of linear habitat features. We realized

that established rules of thumb for declaring a maximum detection distance may not be

appropriate for this model. Future feasibility of this model will depend upon developing

more flexible tools to calculate the joint distribution of observed times and distances.

Keywords: abundance; perceptibility; distance sampling; removal sampling; point

counts; Bayesian; N-mixture model; Stan
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4.1 Introduction

In Chapter 3, we devised a framework that integrates removal and distance models while

also distinguishing two kinds of distance-based perceptibility. State-perceptibility posits that

individual available animals may be either detectable or not detectable by a given observer.

Event-perceptibility states that individual availability cues from state-perceptible animals will

either be detected or not detected. Thus, each detection requires four factors: (i) an animal

is present, (ii) the animal is state-perceptible by the observer, (iii) the animal produces some

availability cue(s), and (iv) the observer perceives one or more of the availability cues. We

demonstrated this combined distance-removal model using simulated covariate-free data across

a range of values for availability, perceptibility, and sample size. In this Chapter, we evaluate

our model’s performance with field data, fitting it to six species observed as part of Iowa State

University’s STRIPs project. Our primary focus is model appraisal, with actual biological

interpretation being a secondary priority. In applying the model, we encounter many challenges

relating to data collection and patterns. These challenges help define the model’s limitations

and identify priorities for its further development.

Section 4.2 describes the avian point-count data used in this analysis. Section 4.3 details

modeling decisions including choice of covariates, priors, and Bayesian model fitting. Section 4.4

presents posterior model estimates and inference across the six species. Section 4.5 catalogues

the limitations faced in applying this model to these data and delineates reasonable steps for

the model’s improvement.

4.2 STRIPs point-count distance-removal surveys

The STRIPs project at Iowa State University (www.prairiestrips.org) investigates the im-

pacts of planting native prairie vegetation strips within row-cropped farm fields. One project

goal is to evaluate the effects of prairie strips on bird use and habitat. Therefore, multi-species

unlimited-radius point-count surveys were conducted in 2015-2016 at paired strips and non-

strips sites. Locations were chosen at 11 properties in central and southern Iowa. Each location

consisted of: (i) a field with prairie strips (Figure 4.1) and (ii) a 100% row-cropped partner field



46

Figure 4.1 Schematic of designs featuring 4-8 meter prairie strips spaced at distances of
40 meters in rowcrop-planted fields. (Source: Iowa Agriculture Water Alliance,
http://www.iowaagwateralliance.com/prairie-strips/).

chosen for comparable environmental factors. At three locations, the prairie strips consisted of

existing prairie-like buffer features rather than of prairie strips planted as part of the STRIPs

project. These existing features were termed ‘proxy-strips’ in contrast to the planted ’strips’

treatments. Prairie strips were at least four meters wide and spaced about 40 meters apart,

constituting 10-20% of field area.

A single observer conducted point count surveys within each field at 3-8 sites (totaling

119 sites) separated by 200 meters in most cases. She surveyed each site up to seven times

during 2015-16 between early May to early August for a total of 511 surveys. Point counts

lasted five minutes and used a removal-sampling protocol, meaning the observer recorded data

for the first detection of each individual and ignored subsequent detections. For each bird

counted, the observer recorded the species, detection type (auditory or visual), distance to

detection, and time to detection. Detection distances were ascertained using a laser range

finder, though recorded distances evidenced a tendency to round to the nearest multiple of

10 or 25 meters. Depending on species, we had to discard the 1-7% of distance observations

recorded simply as ‘200+’. Detection times were censored into one-minute intervals. For flocks

of birds, the observer recorded each individual but did not follow a consistent rule for classifying

such detections as auditory or visual. At the start and end of each day’s surveys (usually 6-15

point-count surveys per day), observation conditions were recorded for temperature, wind, and

cloud cover. We averaged the start and end values for analysis.
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4.3 Model specification, priors, and fit criteria

4.3.1 Model specification

We separately fit the simple (constant availability, uniform density) combined distance-

removal models from Chapter 3 to detection data from each of the six most frequently ob-

served bird species: red-winged blackbird, dickcissel, American robin, Eastern meadowlark,

common yellowthroat, and killdeer. We implemented the joint distribution of detection times

and distances appropriate for time-censored data in Equation (B.23). For simplicity, we made

no distinction between auditory and visual detections, nor did we treat flocked birds differently

than individual birds. These models included heterogeneity through covariates on abundance,

availability, and event perceptibility. We also specified a term for subgroup heterogeneity in

availability rates, as described in Section 3.3.7. This resulted in two availability intercepts: a

‘hard-to-detect’ intercept βAvl01 and an ‘easy-to-detect’ intercept βAvl02 . To enforce βAvl02 > βAvl01 ,

we modeled βAvl02 = βAvl01 + βg where βg ≥ 0.

For abundance covariates on the log-scale expected abundance, we designated fixed effects

with interactions between treatment (control, strips, proxy-strips) and year (2015, 2016) plus

location-specific random effects. In addition to the availability subgroup heterogeneity term

noted above, we regressed the log-scale availability rate on time of day, Julian date, and cloud

cover. We included wind speed as a log-scale modifier for the event-perceptibility detection

radius σEs. We did not model any heterogeneity in state-perceptibility terms. We centered

and scaled all continuous covariates.

An important consideration in these models is the choice of w, the maximum observed dis-

tance or ‘truncation point’. Right-truncation of distances removes outliers and facilitates fitting

of distance functions; however, truncating too many observations leads to larger uncertainty

of estimated abundance densities (Buckland et al., 2001). For point-count surveys, Buckland

et al. (2001) recommended choosing w based on the distance function g(r) so that g(w) ≈ 0.10,

which implies perceptibility of pp = 0.39. They also proposed a less satisfactory alternative of

truncating 10% of observations. Applied to the STRIPs data, these rules lead to truncation

points between 165-250 meters. However, in contrast to conventional distance sampling, our
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model features two distance functions and a model for availability, so the best choice of w may

be different. Indeed, in Chapter 3, we observed that combined models fit to low-availability,

low-perceptibility datasets (pa = pp = 0.4) tended to underestimate abundance (bias = - 16%)

by overestimating availability (bias = 7%). In the context of our model, it may be prudent to

truncate data further so as to achieve pp larger than 0.4. We therefore opted to fit separate

models using multiple truncation points: w = 99, 149, 174, 199, and 224.

4.3.2 Priors

We used the same priors for availability rate, event-, and state-perceptibility intercept terms

as in Section 3.3.8: βAvl01 ∼ N(−1.8, 1), βE0 ∼ N(0.35, 1), and βS0 ∼ N(0.35, 1), respectively.

Because survey durations were only five minutes instead of ten, the median prior availability

was 0.56 with 95% prior probability between (0.11, 1.00). The above availability prior was for

‘hard-to-detect’ birds. We defined a prior for THE difference in availability rates between easy-

and hard-to-detect birds AS βg ∼ Exponential(0.5), which placed the median prior difference

in log-scale availability rates at 1.39 but allowed for differences both small and large. For the

availability rate mixing term γ1, defined as the proportion of birds that were ‘hard-to-detect’,

we used a Uniform(0,1) prior.

Because the priors for abundance, availability, and both perceptibilities all interact in calcu-

lating the effective prior on detection probability p(det), we chose to define different abundance

priors for each species. This allowed us to keep the effective prior on detection probability

consistent. We set abundance priors empirically so that the observed count was slightly above

60% of median prior abundance: βAb0 ∼ N
(
log(mean count)

0.61 , 0.49
)

. Because we used a cell-means

parameterization for abundance fixed effects, each effect shared the same prior. The decrease

in variance (we used 1.0 in Chapter 3) places lower prior probability on large abundances,

especially those corresponding to p(det) < 0.10.

We selected N(0, 1) priors for availability and perceptibility covariate terms. We chose

half-Cauchy(0, 1) priors for random effect variances. Both are the same as in Chapter 3.
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4.3.3 Model fitting

We fit all models by MCMC sampling using the Bayesian statistcal softward Stan, imple-

mented via the R packages rstan version 2.12.1 (Stan Development Team, 2016). We sampled

four chains of 10,000 iterations thinned by 10, except for w = 99 models, which had 20,000

iterations thinned by 20. We discarded half of all samples as warmup. We diagnosed conver-

gence using the Gelman-Rubin potential scale reduction factor R̂ < 1.1 (Gelman and Rubin,

1992).

4.4 STRIPs analysis

4.4.1 Data summary

Table 4.1 Counts by species over 511 point-count surveys. ‘Maximum Distance’ columns show
counts within each given truncation radius — e.g. if we fit a model for Killdeer with
truncation radius w = 174 meters, the sample size would be 191 observations.

Detection Type Maximum Distance (w)

Species Total Auditory Visual 224 199 174 149 99

American robin 284 237 47 221 212 182 143 94

Common yellowthroat 253 239 13 237 231 216 191 137

Dickcissel 558 502 56 532 516 499 448 322

Eastern meadowlark 283 258 24 257 239 213 177 105

Killdeer 220 129 91 208 197 191 169 117

Red-winged blackbird 1168 507 661 1117 1071 993 860 587

Unlimited-range counts by species spanned from 220 to 1168 birds across 511 surveys, al-

though right-truncation of distances diminished usable counts sizeably (Table 4.1). Over 83%

of counts were auditory, except for killdeer (58%) and red-winged blackbirds (43%). Em-

pirical distance functions (Figure 4.2) reveal marked differences between auditory and visual

detections. The observer rarely recorded visual detections beyond 100m, but visual detections

account for most detections within 50m. These plots suggest that our assumption of equal avail-

ability/detection for auditory and visual detections cannot be justified. Additionally, plots for

most species do not fit a half-normal form. In particular, the shortage of detections at near dis-

tances in American robins, dickcissels, eastern meadowlarks, and killdeer indicates that birds
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may move away from the observer before surveys begin. Plots of marginal detection times

and of observed distances by detection time (Figure 4.3) show neither: (i) clear violations of

the constant detection assumption (though this is not very reassuring in light of Chapter 2)

nor (ii) clear patterns of increasing observed distances over time, which we would expect if

event-perceptibility played a strong role in detections.
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Figure 4.2 Density of counts as a function of distance (i.e., counts scaled by distance). In
conventional distance sampling, this should yield the distance function, which we
have assumed to be half-normal. Dashed black lines show auditory counts only.
Solid orange lines show all counts combined. Legend numbers give total counts by
detection type.

4.4.2 Truncation distance

As we decrease the truncation distance w, we expect marginal point estimates of abundance

density and availability to remain constant while credible intervals grow wider, and estimates

of perceptility should increase toward one. Posterior distributions bore out these expectations

for truncation distances of w = 174 and greater, but at smaller radii, abundance estimates

increased and availability estimates decreased. Posterior mean abundance density differed by

< 12% between w = 224 and w = 174 scenarios for all species (Figure 4.4). Likewise, mean
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Figure 4.3 Left: Density plots of observed distances conditioned on the time interval of detec-
tion. Note: for fifth minute, densities reflect ≤ 20 detections for all but red-winged
blackbirds. Right: Total number of birds detected during each minute of observa-
tion.

posterior availability varied by less than 9% over the same scenarios (Figure C.1). At w = 149

and w = 99, except for dickcissels, posterior mean abundance density increased on the order of

14-32% and 40-70%, respectively, with credible intervals becoming 30-60% and 40-190% wider.

Posterior availability estimates at w = 149 remained unchanged for most species but dropped

relatively 11-21% for red-winged blackbirds and eastern meadowlarks. At w = 99, for all species

except dickcissels and killdeer, posterior availability declined a total 23-35% with accompanying

increases in posterior perceptibility. Irregularities surfaced for two species at w = 149 —

red-winged blackbirds showed a bimodal posterior such we sometimes encountered with high-

availability / low-perceptibility simulations in Chapter 3, and perceptibility for American robins

strangely declined.

Buckland et al. (2001) recommended choosing w so that g(w) = 0.10. Based on this

standard, most of our models returned truncation points near 170 meters (or 240 meters for

American robins and eastern meadowlarks). The selection of w involves a trade-off between

detection probability and sample size that we have not yet explored enough to make a firm
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recommendation. However, considering the consistency of larger-radius estimates and the in-

congruity of w = 149 results for two species, for simplicity’s sake we proceed for the rest of this

chapter using the w = 174 for all species. In general, the choice of truncation radius had little

effect on posterior estimates of covariate effects.
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Figure 4.4 Caterpillar plots of posterior abundance density marginally across all surveys.
Black lines show 95% credible intervals, orange lines show 50% credible intervals,
and black dots show posterior medians.

4.4.3 Estimates and inference

The motivating question behind these point-count surveys is whether prairie strip fields host

more birds than rowcropped (control) fields. Figure 4.5 shows expected log-scale abundance

for each treatment-year and compares treatments pairwise averaged across years. Both proxy-

strip and strips sites hosted greater abundance than control sites for dickcissels and red-winged

blackbirds, with proxy-strip sites being more abundant than strips sites for red-winged black-

birds. Strips sites were more abundant than the other treatment sites for common yellowthroat.

Pairwise comparisons within other species had 95% credible intervals that contained zero and

therefore did not attain the usual standard of statistical significance. Still, control treatments
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tended to be less abundant than proxy-strips and strips treatments for eastern meadowlarks

and killdeer, respectively.
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Figure 4.5 Posterior estimates of expected log-scale abundance per survey by treatment-year.
‘Location StDev’ quantifies location-to-location variability. ‘X minus Y ’ entries
show pairwise differences between treatments averaged over years. Black lines
show 95% credible intervals, orange lines show 50% credible intervals, and black
dots show posterior medians.

Estimated detection probabilities were low, often below 30% (Figure 4.6). Abundance

estimation at such low detection levels can be unstable to small perturbations in the data

(Olkin et al., 1981). One explanation for the low detection is the use of 5-minute surveys rather

than the 10-minute surveys used in Chapters 2 & 3. Median posterior marginal availability

ranged from 0.46-0.69, but in a 10-minute survey, the same rate of detection cues would result

in availability closer to 0.7-0.9.

Models for all species estimated high event-perceptibility, meaning the observer detected

most or nearly all availability cues. Viewed in terms of data patterns, a high event-perceptibility

reflects that detection distances did not increase appreciably during the survey interval (Figure



54

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Density Pr(Detection) Availability Perceptibility

25 50 75 0.2 0.3 0.4 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

Red−winged blackbird
Killdeer

Eastern meadowlark
Dickcissel

Common yellowthroat
American robin

S
pe

ci
es

Figure 4.6 Posterior marginal estimates of abundance density (per km2), detection proba-
bility, availability, and perceptibility. By definition, Pr(Detection) = availability
× perceptibility. Black lines show 95% credible intervals, orange lines show 50%
credible intervals, and black dots show posterior medians.

4.3). Looking at just the posterior distributions for the log-scale event-perceptibility intercept

term (Figure 4.6), a low-end estimate of 0.5 translates to an average 84% detection probability

for any single availability cue at a survey site. Most of the posteriors lie between 1.0-1.5, which

translate to 94-98% detection of availability cues.

Estimates of state-perceptibility were much lower, signifying a classic distance-detection

trend. Posterior distributions for the log-scale state-perceptibility intercept term (Figure 4.7)

closely mirror overall estimates of perceptibility (Figure 4.6) — again illustrating that event-

perceptibility plays a comparatively small role in overall perceptibility. For most species, pos-

terior perceptibility was near 0.4, which was a predictable consequence of choosing the w = 174

truncation point (see Section 4.3.1). These estimates indicate that American robins and eastern

meadowlarks are more readily detected at larger distances than are other species. However,

these two species also evidenced the strongest doughnut-hole effect — i.e., few detections at

near distances (Figure 4.2).

Figure 4.7 shows posterior estimates for availability and perceptibility parameters. Esti-

mates by species across all truncation distances may be found in Figures C.2 – C.7. Killdeer

were the only species to show no signs of subgroup heterogeneity in availability, as seen in

posterior estimation of the mixing parameter and the ‘Easy-Hard Difference’. For all other

species, easy-to-detect birds were nearly always available during the survey (a low easy-to-

detect intercept of -0.5 corresponds to 95% availability during a 5-minute survey). As such,

the mixture of availability rates mainly describes increase of first-interval detections observed
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relative to what would be expected from a purely exponential time-to-detection distribution.

Red-winged blackbirds were more often available later in the day, while common yellowthroats

were more available early. Most species were more often available early in the year than later,

though dickcissels were available more often later in the season. Examination of random effects

on availability by survey date suggests that the effect of Julian date is actually quadratic for

dickcissels and killdeer, peaking for both 2-3 weeks into June. Likely, this trend accounts for

the high estimates day-to-day variation in availability for these two species. There were no

discernible effects of cloud cover on availability or of wind conditions on event perceptibility.
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Figure 4.7 Posterior availability and perceptibility estimates. Top row: log-scale availability
rate intercepts for hard- and easy-to-detect birds, their difference, and the mixing
parameter γ giving the proportion of birds that are hard-to-detect. Middle row:
covariates on the log-scale availability rate plus random day-to-day availability
variability (‘Date StDev’). Bottom row: log-scale intercept terms for event- and
state-perceptibility plus a wind covariate on event-perceptibility. Black lines show
95% credible intervals, orange lines show 50% credible intervals, and black dots
show the posterior mean.
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4.5 Discussion

One way to gain insight into a model is to apply it to a not wholly appropriate dataset.

In fitting our two-perceptibility distance-removal model to avian species from the STRIPs

experiment, we encountered several violations of assumptions that show the model’s limitations

and point the way to further development. These violations include: pooling of auditory and

visual detections, a doughnut-hole effect, flocks, and maybe non-random location of survey sites.

The inference resulted in apparent contradictions in perceptibility estimates and a heightened

awareness of the role of truncation distance in model results. Based on Chapter 2, we would

like to believe that effect size estimates may be robust to model misspecification, although

abundance estimates will not. However, given the degree of mismatch between our model and

patterns in the STRIPs data, we would be cautious interpreting even effect sizes.

One simple and practical improvement to our model would be to parameterize abundance

in terms of abundance density rather than counts per survey site. This would facilitate com-

parisons of models using different truncation distances. It would also simplify specification of

priors, as the abundance prior would not be influenced by truncation radius.

We modeled auditory and visual cues identically, but Figure 4.2 illustrates that the observed

distance functions for the two modes of detection were clearly different. Visual detections

accounted for most observations at short radius, whereas auditory detections predominated at

distance. To our knowledge, nobody has undertaken to model both detection types for a single

dataset, in part because visual detections rarely account for more than 15% of point-count

survey observations (Alldredge et al., 2007b; Brewster and Simons, 2009). Our results suggest

that this assumption at least merits further investigation. Because our model operates within a

continuous-time parametric survival analysis framework, it is straight-forward conceptually to

accommodate two competing modes of detection, even if it will prove technically more difficult

to implement. A two-mode model would require separate auditory and visual functions for

availability, event-perceptibility, and state-perceptibility. We might first simplify the model by

assuming that auditory state-perceptibility is 100%, thus making the modeled population a

mixture of birds that are and are not visually state-perceptible. For visually state-perceptible
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birds, detection rates conditional on radius could then be expressed as the superposition of

homogeneous visual and auditory Poisson processes. Birds that are not state-perceptible would

be detected solely from the auditory Poisson process. Ultimately, this model would result in

two joint distributions of observed distances and times: one for auditory detections and one

for visual detections. Because of the need for adequate sample size, the red-winged blackbird

data would be well-suited to this exercise.

A second obstacle to fitting our model was the doughnut-hole effect, which was likely

caused by movement away from the observer (Fewster et al., 2008; Borchers and Cox, 2016).

This pattern can lead to overestimation of perceptibility and underestimation of abundance.

It was clearly evident in STRIPs detections of American robins and eastern meadowlarks.

Borchers and Cox (2016) accounted for movement away from observers in a line transect context

by specifying a non-uniform distribution of animals fR(r) in space. Their model had event-

perceptibility but not state-perceptibility, so fR(r) was identifiable with respect to their versions

of the distance function gE(r). However, they noted that models without time-to-detection data

risked confounding between the distribution function fR(r) and the detection function. In the

context of our combined state- and event-perceptibility model, we can see that confounding

arises not from the absence of time-to-detection data per se, but from the inclusion of a state-

perceptibility term. Referring to Eq. (3.10), in our combined model the joint distribution of

detected times and distances is:

fR,T |det(r, t|det) =
fR(r)fT |R(t|r)

p(det)
I(0 < r < w, 0 < t < C)

=
fR(r)gS(r)gE(r)ϕ(t) exp

(
−
∫ t
0 g

E(r)ϕ(u)du
)

p(det)
I(·)

= fR(r)gS(r)× unrelated terms

so that inference about the doughnut-hole distribution of fR(r) is entirely reliant upon the

chosen forms of fR(r) and gS(r).

For red-winged blackbirds, one-sixth of all detections appeared in clusters of five or more

birds, while half of detections occurred singly. A simple strategy for modeling clusters treats

each flock as an ‘object of interest’ (i.e., single detection) and computes abundance by adjusting
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for estimated average flock size; however, if flock size influences detection probability, more

sophisticated methods are needed (Buckland, 2004). The STRIPs data are further complicated

because records of auditory/visual detections for clusters was inconsistent.

Our assumption of uniform avian density relies on the random location of survey sites with

respect to the population of interest (Buckland et al., 2001). If sites are not randomly located

with respect to linear features (e.g. roads), we can adjust the density function fR(r) accordingly

(Marques et al., 2010) . While STRIPs survey sites appear to have been placed in a triangular

grid, we do not know design details beyond this. It is possible that the placement of survey

sites relative to prairie strips or habitat beyond field edges influenced model estimates.

Our perceptibility results pose a seeming contradiction: individual availability cues were

detected reliably at large distances (high event-perceptibility), but perceptibility dropped off

considerably within 100 meters (40% state-perceptibility). These results would be sensible for

visual surveys of an eye-catching species on a patchwork landscape, but for largely auditory

counts, they are problemmatic. In terms of data patterns, the estimated state-perceptibility

captures the fact that the number of detections declined with distance. The estimated event-

perceptibility reflects that observed distances did not appreciably change with time during a

survey — phrased differently, the distribution of observed times and distances was not much

different from the independent product of the marginal distributions. We surmise these results

stem from data patterns not mechanistically addressed in the model. The two main suspects

are: (i) competing visual and auditory detections, and (ii) the doughnut effect.

Perceptibility estimates depend upon the chosen truncation distance. Selecting a truncation

point w in distance sampling involves a trade-off. At larger radii, estimated perceptibility

decreases and thereby can lead to large uncertainty in estimated abundance – essentially, large

portions of the analyst-defined survey area provide few observations to inform estimation. At

small radii, truncation gets rid of too many field observations — plus, small radii exacerbate

the impact of movement toward or away from the observer. Conventional distance sampling

recommends choosing w for point-count surveys so that perceptibility is roughly 0.40. However,

our model featues a second type of perceptibility plus an availability term that are not part of

conventional distance sampling. Further, we noted in Chapter 3 that abundance estimates for
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low-perceptibility species can be biased low when availability is also low. We believe traditional

standards for selecting a truncation distance may not apply to our model. We intend to augment

Chapter 3 with an additional simulation study quantifying the bias and uncertainty that results

from selecting a truncation radius.

The bulk of issues described above are well-known challenges in distance modeling with

an established literature exploring them and strategizing remedies. While those strategies are

transferrable to our model, their implementations unfortunately are not. For every change

to assumptions about availability, perceptibility, or population distribution in our model, we

must rederive the calculations for the joint distribution of observed times and distances. The

constant-rate, half-normal-distance, uniform-density model we have exhibited is the easy sce-

nario. For most other forms, none of the integrals are analytic, so each modification requires

new numerical approximations for detection probabilities. If this model is to be broadly fea-

sible, we will need to develop a more flexible, perhaps approximate, method for incorporating

changes.
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CHAPTER 5. CONCLUSION

We have proposed two classes of models that leverage detection time and distance patterns

in order to estimate abundance from single-species removal-sampled point-count data. These

models implement continuous-time parametric survival analysis of detections within a hierar-

chical N-mixture framework, thereby modeling mixed effects for abundance, availability, and

perception. In terms of the generic posterior distribution from Equation (3.1):

p(θ|n(obs), r, t) ∝ p
(
n(obs)|θ, p(det)

)(∏
i=1

f (ri, ti|θ, p(det))

)
p(θ) (5.1)

our models utilize the observed distributions of time and distance — f (ri, ti|θ, p(det)) — in

order to more accurately and flexibly estimate detection and its related parameters. Each

model extends the range of hypotheses that can be addressed with these kinds of data.

In Chapter 2, we formulated a removal-only model that allows detection rates to change

systematically during a survey period. We demonstrated that time-to-detection distributions

(TTDDs) based on two-parameter families (e.g. gamma) provide a flexible alternative to the

standard assumption of constant detection rates. The constant rate assumption, on the other

hand, can be rather too informative, leading to biased, overly precise abundance estimates.

We recommend that non-constant TTDDs be used in analyses where abundance estimation

is a primary objective. However, if abundance and detection effect estimates are the primary

objective, our results suggest these may be robust to the choice of TTDD. Relative abundance

estimates obtained from constant-detection models may still be useful if treated as a kind of

detection-weighted index for abundance (Johnson, 2008). Further research is required on this

question.

In Chapters 3, we reconciled two distinct approaches to distance-removal modeling, one

emphasizing detectable animals and the other emphasizing detectable cues. In the process,



61

we defined two types of perceptibility and clarified their relationship to availability. Our sim-

ulations showed that single-perceptibility state and event models return differing inference,

especially under conditions of low perceptibility and high availability. We combined both per-

ceptibility types into a single model which frames detection as a four-stage process requiring:

presence, state perceptibility, availability, and perception of at least one availability event. This

combined state-event model yielded accurate abundance estimates across all scenarios. Based

on these results, we recommend implementing a dual-perceptibility approach for all distance-

removal models.

In Chapter 4, we evaluated the four-stage distance-removal model by applying it to point-

count surveys of six species from the STRIPs project at Iowa State University. Several data

features violated model assumptions, pointing to model limitations and directions for its im-

provement. Problematic data features included the pooling of auditory and visual detections,

movement of animals away from the observer, flocks, and linear habitat structures. Future

improvements for the model should prioritize: (i) guidelines for identifying of an appropriate

distance truncation radius, and (ii) flexibility in the calculation of the joint distribution of ob-

served times and distances so that users can easily change forms of the abundance, availability,

and perceptibility models.

5.1 Data considerations

Models of detection rely upon extrapolating a pattern of times and distances for observed

individuals — f (ri, ti|θ, p(det)) from Equation (5.1) — to realistically describe the pattern

for unobserved individuals. If a chosen TTDD and/or perceptibility model fails to adequately

describe either observed and/or unobserved detection patterns, then abundance estimates will

be wrong. From our vantage as modelers, some modifications to data collection could improve

model performance. The basic strategies are: (i) more exact data, (ii) longer surveys (iii) more

complete data, and (iv) less distorted data. We discuss these with a focus on avian surveys.

With the advent of laser range finders, observers already collect exact distances (within

practicality). If observers can also collect exact detection times, then model precision should

improve, though due to observer saturation this may be easier said than done. Early in our
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explorations, we fit constant-rate removal-only models to 10-minutes surveys censored into three

or nine intervals. Detection parameter credible intervals were roughly 20% narrower when using

the nine-interval data. We likewise expect that analyses based on exact data will yield more

precise results than those based on interval-censored data. A simulation study could quantify

the benefit of using exact times relative to interval-censoring under various scenarios. Using

exact distances and times can also speed MCMC sampling. Calculating the joint distribution

for each observation f (ri, ti|θ, p(det)) is a simple functional evaluation for exact data, but

for interval-censored data, it involves integration across the censored units. When analytic

solutions are available (e.g. the simple scenario used in Chapters 3 & 4), we can bypass the

integration step, but when they are not available, numeric integration will be required for every

observation within each MCMC iteration.

Longer surveys could provide better estimation of TTDD shape and detection probability.

However, birds are mobile and a 10-minute survey already stretches credulity in terms of

population closure (Lee and Marsden, 2008; Reidy et al., 2011; Hutto, 2016). We think that

well-designed longer duration studies could supplement point-count surveys, with availability

information being transmitted through model priors. Diefenbach et al. (2007) conducted one-

hour observations of sparrows that had been tagged and fitted with radiotransmitters. Such

a long-term observation potentially provides a good characterization of TTDDs over time.

Unfortunately, the methodology is labor-intense and only monitors a few birds at any time.

Alldredge et al. (2007a) proposed the collection of complete detection history data. Censor-

ing observations in time, they recorded every interval during which each bird sang rather than

just the first interval. Although our models are not constructed for complete detection data,

we endorse this approach because it retains all observations and potentially helps to charac-

terize behavioral subgroups (hard- and easy-to-detect). Drawbacks are that this may become

overwhelming for an observer in a multi-species study, and repeat observations of an individual

are not independent.

A major concern of ours has been the distortion of theoretical distributions used in model-

ing, especially due to observer effects. We used two-parameter TTDD families to approximate

observer effects in removal-only models, but modeling observer effects in a distance-removal
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context should become a more complex problem, since these effects should diminish with dis-

tance. Therefore, design-based solutions are desireable. Settling down periods at the outset of

a survey may address the non-constant detection dimension of this problem, but they come at

a heavy cost in terms of total count and distortions to the spatial distribution of animals (Lee

and Marsden, 2008).

We are hopeful about advances in microphone surveys. Microphone arrays have the poten-

tial to address every one of the above issues, yielding exact-time, unlimited-duration, complete-

history, observer-free detections. Campbell and Francis (2012) used microphone arrays to test

for observer effects. They monitored sites before and during observer-conducted avian point-

count surveys and found no change in microphone-recorded detection rates or distances. To be

sure, there are technological obstacles to overcome, including identification and classification

of individual calls, triangulation of distances under varying conditions, and data management

(Blumstein et al., 2011).

5.2 Modeling considerations

Our top priority for model development is a simulation study for choosing the truncation

point w for the distance-removal model. Buckland et al. (2001) suggest selecting w in a con-

ventional distance sampling point-count analysis so that perceptibility is roughly 0.40, but our

model is more complex due to the additions of an availability model and an event-perceptibility

model. Further, our simulation results from Chapter 3 for models fit to low-perceptibility (0.40)

datasets suggest that abundance estimates may be biased when availability is low. A simulation

study should help characterize the trade-off between uncertainty at large radii versus sample

size at small radii.

We have utilized simulation studies to quantify bias and coverage over a large number of

model fits, but we have not delved into model diagnostics for evaluating single model fits, nor

selection tools for comparing related models fit to the same dataset. Early efforts in these

directions have not been promising with regard to time-to-detection data. Posterior predictive

checks based on the marginal distribution of detection times only showed clear misspecification

for the most egregious of model misfits in Chapter 2. Likewise, comparison of DIC values led
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to correct model selection for only the same set of egregious scenarios, and it also sometimes

produced erroneous selection. In Chapter 3, the ∆elpd statistic (based on leave-one-out in-

formation criterion and related to WAIC) only pointed to the correct state or event model in

scenarios of where they most sharply contrasted, and it was not consistently informative in

scenarios featuring abundance bias from 15% to as high as 50%. For both model diagnostics

and model comparison, the main barricade to progress with time-to-detection data is extrap-

olation. A wide variety of models can provide reasonable fits for detected individuals while

differing substantially in predictions for unobserved individuals. There is no way to choose

between such models without either collecting extra data or imposing assumptions. We are

not concerned about goodness-of-fit for the distance component of the data. The established

method is to bin distance observations and calculate χ2 statistics (Buckland et al., 2001). Es-

pecially in state models, which treat distance events as independent from time events, we see

no reason to doubt the existing method.

One obvious continuation of our research is to merge the models from Chapters 2 & 3

and create a non-constant detection distance-removal model. We have already established the

theoretical architecture for this in Chapter 3; it ‘just’ remains to implement the calculations. Of

the three TTDDs we considered, we recommend beginning with a Weibull for the distribution

of detection times given distance fT |R(t|r). In simulations, the Weibull generally seemed more

accurate than the lognormal. Meanwhile, we want to avoid the gamma distribution because it

has a non-analytic cdf, meaning that calculations of ps(det) =
∫ w
0

∫ C
0 fT |R(t|r)fR(r)dtdr from

Section 3.3.4 would require a double numeric integration.

As with modeling non-constant detection, we also would like the flexibility to model per-

ceptibility functions gE(r) and gS(r) as other than half-normal. The flexibility of perceptibility

functions in conventional distance sampling is one of the chief attractions of the approach.

In particular, the distance function can be modeled using a key function plus series adjust-

ment (Buckland et al., 2001; Miller and Thomas, 2015), which is flexible enough to conform to

many empirical distributions. Assuming constant-rate detection, calculations for p(det) in our
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combined model (Equation (B.26))

p(det) =
2

w2

w∫
0

rgS(r)
[
1− e−gE(r)ϕC

]
dr (5.2)

would become as complicated as the proposed perceptibility functions, but would only require

a single integration:

In general, the integrations required to calculate detection probabilities limit the flexibility

of our distance-removal model. If we wish to make model implementation more broadly feasible,

we must explore improvements. At present, our hierarchical model consists of four sub-models

plus a site-level animal distribution function: abundance, availability, state perceptibility, and

event perceptibility, plus fR(r). Each has an assumed form — right now, those are Poisson,

exponential, half-normal, half-normal, and uniform, respectively. Changes to any of these (ex-

cept abundance) necessitate derivation of a new integral to obtain p(det), and as things stand,

that requires a new numerical integration/approximation. This can also add a computational

burden if data are interval-censored in distance or time, because the MCMC sampling may

additionally involve numerical integrations for each observation during each MCMC iteration.

We think step-function approximations of distance-related functions would lead to simpler

computations and greater flexibility with regard to the selection of perceptibility functions.

The basic idea is to replace the joint distribution of observed times and distances

f (r, t|θ, p(det)) =
f (r, t|θ)

p(det|θ)

from Equation (5.1) with an approximation

f (r, t|θ, p(det)) ≈ f (r, t|θ)

p̃(det|θ)

where p̃(det|θ) is based on the step-function approximations. At present, during each sampling

iteration our Stan model calculates p(det|θ) for each survey using a series approximation to

Equation (3.16) implemented through integration by parts (see Equation (B.31)). If we want to

change perceptibility functions with the current code, we would need to re-derive both Equa-

tion (3.16) and Equation (B.31). Step-function approximations would make it easier to code

changes to the perceptibility functions. Step-function approximations replace the integration
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over distance with a summation over distance increments:

p̃(det|θ) =
∑
r∈Rj

fR(r)

C∫
0

fT |R(t|r) dt

 (5.3)

where Rj are increments of the approximating step functions over which gS(r), gE(r), and

fR(r) take constant values. The integral in Equation (5.3) is just a scaled cdf of the distance-

dependent TTDD, recalling from Equation (3.10):

fT |R(t|r) = gSs (r)gEs (r)ϕs(t) exp

(
−
∫ t

0
gEs (r)ϕs(u)

)
(5.4)

The key point is: if we want to change the perceptibility functions gS(r) and/or gE(r), then we

only need to recode the functions for gS(r) and gE(r); we do not need to rederive an integral

with respect to distance or its series approximation.
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APPENDIX A. SUPPORTING TABLES AND FIGURES FOR
CHAPTER 2

Tables

Table A.1 Table of parameter values used to generate data for: (i) the mixture vs. non-mix-
ture simulation, and (ii) the constant vs. non-constant rate simulation. Here γ
is a mixing parameter for the proportion of ‘hard to detect’ individuals, ϕ is the
detection rate parameter, and α is the shape parameter.

Family Mixture Peaked γ ϕ α

Exponential Non-mixture -1.827

Mixture 0.65 -2.138

Gamma Non-mixture Nonpeaked -3.279 0.257

Peaked -0.746 3.371

Mixture Nonpeaked 0.65 -2.773 0.577

Peaked 0.65 -1.210 2.491

Lognormal Non-mixture Nonpeaked -0.341 2.330

Peaked -1.872 0.512

Mixture Nonpeaked 0.65 -1.462 1.674

Peaked 0.65 -1.992 0.618

Weibull Non-mixture Nonpeaked -1.165 0.418

Peaked -2.042 1.829

Mixture Nonpeaked 0.65 -2.063 0.687

Peaked 0.65 -2.201 1.621
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Table A.3 Summary of mixture vs. non-mixture model fits when the detection probability is
p(det) = 0.50. In all cases, the inference model family matches the dataset family.
Med p: average across simulations of the posterior median of p(det). Q(p): average
proportion of the posterior distribution of p(det) that is larger than the true value.
50% and 90% coverage is expressed as the proportion of 100 simulations for which
the true value of p(det) lies within the appropriate credible interval.

Non-mixture model Mixture model
Med p Q(p) 50% 90% Med p Q(p) 50% 90%

T
T
D
D

u
se
d
to

si
m
u
la
te

d
a
ta

N
o
n
-m

ix
tu
re

N
o
n
p
k
. Gamma 0.67 0.84 0.11 0.94 0.76 0.92 0.00 0.70

Lognormal 0.54 0.60 0.81 1.00 0.68 0.88 0.05 0.79
Weibull 0.55 0.61 0.79 0.99 0.69 0.84 0.16 0.87
Exponential 0.49 0.45 0.51 0.93 0.45 0.30 0.47 0.86

P
ea
k
ed Gamma 0.48 0.46 0.57 0.90 0.57 0.72 0.42 0.85

Lognormal 0.49 0.45 0.53 0.93 0.54 0.69 0.37 0.89
Weibull 0.48 0.48 0.40 0.91 0.59 0.74 0.37 0.80

M
ix
tu
re N
o
n
p
k
. Gamma 0.62 0.76 0.42 0.99 0.71 0.86 0.10 0.89

Lognormal 0.50 0.47 0.95 1.00 0.64 0.84 0.09 0.97
Weibull 0.50 0.47 0.92 1.00 0.64 0.77 0.39 0.98
Exponential 0.88 1.00 0.00 0.00 0.50 0.49 0.54 0.95

P
ea
k
ed Gamma 0.24 0.01 0.00 0.00 0.52 0.53 0.76 0.99

Lognormal 0.18 0.00 0.00 0.00 0.49 0.47 0.66 0.97
Weibull 0.18 0.00 0.00 0.00 0.52 0.52 0.80 1.00

Table A.4 Summary of mixture vs. non-mixture model fits when the detection probability is
p(det) = 0.65. In all cases, the inference model family matches the dataset family.
Med p: average across simulations of the posterior median of p(det). Q(p): average
proportion of the posterior distribution of p(det) that is larger than the true value.
50% and 90% coverage is expressed as the proportion of 100 simulations for which
the true value of p(det) lies within the appropriate credible interval.

Non-mixture model Mixture model
Med p Q(p) 50% 90% Med p Q(p) 50% 90%

T
T
D
D

u
se
d
to

si
m
u
la
te

d
a
ta

N
o
n
-m

ix
tu
re

N
o
n
p
k
. Gamma 0.69 0.59 0.78 0.98 0.78 0.79 0.35 0.90

Lognormal 0.59 0.31 0.45 0.91 0.73 0.69 0.63 0.90
Weibull 0.60 0.38 0.59 0.99 0.73 0.68 0.59 0.94
Exponential 0.64 0.47 0.50 0.85 0.61 0.29 0.33 0.82

P
ea
k
ed Gamma 0.64 0.44 0.46 0.89 0.68 0.66 0.51 0.85
Lognormal 0.64 0.47 0.36 0.87 0.67 0.63 0.44 0.79
Weibull 0.61 0.40 0.46 0.88 0.69 0.67 0.46 0.88

M
ix
tu
re N
o
n
p
k
. Gamma 0.60 0.36 0.78 1.00 0.71 0.63 0.81 0.99

Lognormal 0.52 0.13 0.12 0.74 0.67 0.54 0.93 1.00
Weibull 0.51 0.17 0.23 0.82 0.66 0.52 0.92 1.00
Exponential 0.93 1.00 0.00 0.00 0.63 0.46 0.45 0.87

P
ea
k
ed Gamma 0.26 0.00 0.00 0.00 0.58 0.34 0.51 0.95

Lognormal 0.20 0.00 0.00 0.00 0.61 0.41 0.58 0.92
Weibull 0.19 0.00 0.00 0.00 0.56 0.34 0.44 0.95
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Table A.5 Summary of mixture vs. non-mixture model fits when the detection probability is
p(det) = 0.80. In all cases, the inference model family matches the dataset family.
Med p: average across simulations of the posterior median of p(det). Q(p): average
proportion of the posterior distribution of p(det) that is larger than the true value.
50% and 90% coverage is expressed as the proportion of 100 simulations for which
the true value of p(det) lies within the appropriate credible interval.

Non-mixture model Mixture model
Med p Q(p) 50% 90% Med p Q(p) 50% 90%

T
T
D
D

u
se
d
to

si
m
u
la
te

d
a
ta

N
o
n
-m

ix
tu
re

N
o
n
p
k
. Gamma 0.75 0.39 0.45 0.92 0.83 0.62 0.55 0.91

Lognormal 0.71 0.29 0.29 0.82 0.82 0.61 0.63 0.91
Weibull 0.72 0.34 0.41 0.86 0.82 0.60 0.59 0.93
Exponential 0.80 0.49 0.54 0.88 0.78 0.32 0.48 0.86

P
ea
k
ed Gamma 0.79 0.44 0.45 0.87 0.81 0.59 0.45 0.90

Lognormal 0.80 0.48 0.52 0.95 0.81 0.60 0.53 0.92
Weibull 0.78 0.37 0.38 0.84 0.81 0.57 0.49 0.92

M
ix
tu
re N
o
n
p
k
. Gamma 0.64 0.11 0.11 0.59 0.75 0.38 0.64 1.00

Lognormal 0.58 0.06 0.04 0.27 0.74 0.33 0.51 0.98
Weibull 0.54 0.04 0.01 0.23 0.70 0.27 0.46 1.00
Exponential 0.96 1.00 0.00 0.00 0.78 0.45 0.42 0.86

P
ea
k
ed Gamma 0.28 0.00 0.00 0.00 0.72 0.30 0.40 0.80

Lognormal 0.22 0.00 0.00 0.00 0.78 0.45 0.46 0.87
Weibull 0.22 0.00 0.00 0.00 0.69 0.29 0.33 0.88

Table A.6 Summary of mixture vs. non-mixture model fits when the detection probability is
p(det) = 0.95. In all cases, the inference model family matches the dataset family.
Med p: average across simulations of the posterior median of p(det). Q(p): average
proportion of the posterior distribution of p(det) that is larger than the true value.
50% and 90% coverage is expressed as the proportion of 100 simulations for which
the true value of p(det) lies within the appropriate credible interval.

Non-mixture model Mixture model
Med p Q(p) 50% 90% Med p Q(p) 50% 90%

T
T
D
D

u
se
d
to

si
m
u
la
te

d
a
ta

N
o
n
-m

ix
tu
re

N
o
n
p
k
. Gamma 0.95 0.44 0.59 0.95 0.96 0.62 0.61 0.96

Lognormal 0.94 0.42 0.47 0.87 0.96 0.65 0.44 0.90
Weibull 0.94 0.46 0.43 0.90 0.96 0.67 0.52 0.84
Exponential 0.95 0.54 0.48 0.90 0.94 0.37 0.42 0.89

P
ea
k
ed Gamma 0.95 0.43 0.44 0.89 0.95 0.50 0.40 0.88
Lognormal 0.95 0.50 0.44 0.88 0.95 0.54 0.44 0.88
Weibull 0.95 0.53 0.49 0.91 0.96 0.65 0.42 0.85

M
ix
tu
re N
o
n
p
k
. Gamma 0.85 0.04 0.03 0.22 0.91 0.25 0.31 0.77

Lognormal 0.85 0.03 0.03 0.16 0.92 0.28 0.38 0.86
Weibull 0.71 0.01 0.01 0.02 0.87 0.22 0.28 0.68
Exponential 0.99 1.00 0.00 0.00 0.94 0.41 0.51 0.85

P
ea
k
ed Gamma 0.37 0.00 0.00 0.00 0.94 0.39 0.41 0.83

Lognormal 0.27 0.00 0.00 0.00 0.94 0.40 0.43 0.83
Weibull 0.28 0.00 0.00 0.00 0.93 0.36 0.47 0.80
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Table A.7 Summary of models fits across family of TTDD when true detection probability
is p(det) = 0.50. All data and inference models have mixture components. Med
p: average across simulations of the posterior median of p(det). Q(p): average
proportion of the posterior distribution of p(det) that is larger than the true value.
50% and 90% coverage is expressed as the proportion of simulations for which the
true value of p(det) lies within the appropriate credible interval.

Exponential mixture model Gamma mixture model

Med p Q(p) 50% 90% Med p Q(p) 50% 90%

D
a
ta

M
ix
tu
re

N
o
n
p
k
. Gamma 0.84 0.99 0.00 0.05 0.71 0.86 0.10 0.89

Lognormal 0.89 1.00 0.00 0.00 0.78 0.93 0.01 0.56
Weibull 0.86 1.00 0.00 0.02 0.73 0.89 0.03 0.82
Exponential 0.50 0.49 0.54 0.95 0.54 0.57 0.84 1.00

P
ea
k
ed Gamma 0.31 0.06 0.05 0.32 0.52 0.53 0.76 0.99

Lognormal 0.26 0.02 0.00 0.09 0.59 0.68 0.52 0.91
Weibull 0.30 0.05 0.05 0.28 0.49 0.46 0.75 1.00

Lognormal mixture model Weibull mixture model

Med p Q(p) 50% 90% Med p Q(p) 50% 90%

D
a
ta

M
ix
tu
re

N
o
n
p
k
. Gamma 0.63 0.80 0.23 0.99 0.63 0.74 0.54 0.98

Lognormal 0.64 0.84 0.09 0.97 0.68 0.83 0.21 0.95
Weibull 0.63 0.81 0.18 0.99 0.64 0.77 0.39 0.98
Exponential 0.49 0.45 0.77 1.00 0.54 0.56 0.87 0.99

P
ea
k
ed Gamma 0.45 0.36 0.60 1.00 0.55 0.58 0.77 0.98

Lognormal 0.49 0.47 0.66 0.97 0.64 0.75 0.43 0.87
Weibull 0.43 0.30 0.51 0.97 0.52 0.52 0.80 1.00

Table A.8 Summary of models fits across family of TTDD when true detection probability
is p(det) = 0.65. All data and inference models have mixture components. Med
p: average across simulations of the posterior median of p(det). Q(p): average
proportion of the posterior distribution of p(det) that is larger than the true value.
50% and 90% coverage is expressed as the proportion of simulations for which the
true value of p(det) lies within the appropriate credible interval.

Exponential mixture model Gamma mixture model

Med p Q(p) 50% 90% Med p Q(p) 50% 90%

D
a
ta

M
ix
tu
re

N
o
n
p
k
. Gamma 0.83 0.96 0.04 0.21 0.71 0.63 0.81 0.99

Lognormal 0.91 1.00 0.00 0.00 0.82 0.86 0.19 0.70
Weibull 0.87 0.98 0.01 0.09 0.75 0.72 0.54 0.97
Exponential 0.63 0.46 0.45 0.87 0.60 0.38 0.70 1.00

P
ea
k
ed Gamma 0.33 0.01 0.02 0.05 0.58 0.34 0.51 0.95

Lognormal 0.30 0.00 0.00 0.00 0.71 0.68 0.48 0.88
Weibull 0.32 0.00 0.00 0.00 0.53 0.25 0.31 0.89

Lognormal mixture model Weibull mixture model

Med p Q(p) 50% 90% Med p Q(p) 50% 90%

D
a
ta

M
ix
tu
re

N
o
n
p
k
. Gamma 0.63 0.43 0.87 1.00 0.63 0.45 0.94 1.00

Lognormal 0.67 0.54 0.93 1.00 0.73 0.66 0.68 0.98
Weibull 0.64 0.46 0.97 1.00 0.66 0.52 0.92 1.00
Exponential 0.55 0.24 0.39 0.95 0.58 0.36 0.69 1.00

P
ea
k
ed Gamma 0.50 0.16 0.21 0.65 0.62 0.44 0.59 0.98

Lognormal 0.61 0.41 0.58 0.92 0.77 0.79 0.34 0.78
Weibull 0.47 0.11 0.13 0.48 0.56 0.34 0.44 0.95
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Table A.9 Summary of models fits across family of TTDD when true detection probability
is p(det) = 0.80. All data and inference models have mixture components. Med
p: average across simulations of the posterior median of p(det). Q(p): average
proportion of the posterior distribution of p(det) that is larger than the true value.
50% and 90% coverage is expressed as the proportion of simulations for which the
true value of p(det) lies within the appropriate credible interval.

Exponential mixture model Gamma mixture model

Med p Q(p) 50% 90% Med p Q(p) 50% 90%

D
a
ta

M
ix
tu
re

N
o
n
p
k
. Gamma 0.86 0.83 0.25 0.59 0.75 0.38 0.64 1.00

Lognormal 0.93 1.00 0.00 0.01 0.88 0.80 0.33 0.72
Weibull 0.89 0.93 0.11 0.36 0.79 0.49 0.66 0.99
Exponential 0.78 0.45 0.42 0.86 0.70 0.25 0.32 0.91

P
ea
k
ed Gamma 0.37 0.00 0.00 0.00 0.72 0.30 0.40 0.80

Lognormal 0.34 0.00 0.00 0.00 0.85 0.77 0.24 0.65
Weibull 0.38 0.00 0.00 0.00 0.65 0.16 0.22 0.54

Lognormal mixture model Weibull mixture model

Med p Q(p) 50% 90% Med p Q(p) 50% 90%

D
a
ta

M
ix
tu
re

N
o
n
p
k
. Gamma 0.65 0.16 0.16 0.85 0.67 0.23 0.34 0.99

Lognormal 0.74 0.33 0.51 0.98 0.81 0.55 0.59 0.97
Weibull 0.66 0.17 0.22 0.87 0.70 0.27 0.46 1.00
Exponential 0.61 0.11 0.12 0.52 0.64 0.21 0.24 0.85

P
ea
k
ed Gamma 0.64 0.09 0.10 0.41 0.77 0.49 0.46 0.93

Lognormal 0.78 0.45 0.46 0.87 0.90 0.90 0.13 0.40
Weibull 0.57 0.04 0.02 0.19 0.69 0.29 0.33 0.88

Table A.10 Summary of models fits across family of TTDD when true detection probability
is p(det) = 0.95. All data and inference models have mixture components. Med
p: average across simulations of the posterior median of p(det). Q(p): average
proportion of the posterior distribution of p(det) that is larger than the true value.
50% and 90% coverage is expressed as the proportion of simulations for which the
true value of p(det) lies within the appropriate credible interval.

Exponential mixture model Gamma mixture model

Med p Q(p) 50% 90% Med p Q(p) 50% 90%

D
a
ta

M
ix
tu
re

N
o
n
p
k
. Gamma 0.94 0.30 0.38 0.83 0.91 0.25 0.31 0.77

Lognormal 0.97 0.91 0.07 0.44 0.96 0.72 0.46 0.82
Weibull 0.94 0.29 0.37 0.76 0.91 0.25 0.32 0.76
Exponential 0.94 0.41 0.51 0.85 0.92 0.26 0.33 0.82

P
ea
k
ed Gamma 0.55 0.00 0.00 0.00 0.94 0.39 0.41 0.83

Lognormal 0.47 0.00 0.00 0.00 0.97 0.80 0.27 0.65
Weibull 0.57 0.00 0.00 0.00 0.89 0.08 0.09 0.43

Lognormal mixture model Weibull mixture model

Med p Q(p) 50% 90% Med p Q(p) 50% 90%

D
a
ta

M
ix
tu
re

N
o
n
p
k
. Gamma 0.81 0.11 0.10 0.35 0.87 0.23 0.22 0.68

Lognormal 0.92 0.28 0.38 0.86 0.95 0.55 0.57 0.92
Weibull 0.82 0.10 0.15 0.34 0.87 0.22 0.28 0.68
Exponential 0.82 0.09 0.09 0.38 0.88 0.20 0.25 0.65

P
ea
k
ed Gamma 0.91 0.09 0.10 0.42 0.97 0.79 0.26 0.63

Lognormal 0.94 0.40 0.43 0.83 0.98 0.98 0.01 0.12
Weibull 0.84 0.01 0.00 0.03 0.93 0.36 0.47 0.80
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Figures
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Figure A.1 Caterpillar plots of posterior estimates of p(det) from Section 2.4.3. Black lines
show 95% credible intervals, orange lines show 50% credible intervals, and black
dots show posterior medians. ‘X’ marks the expected marginal probability of
detection based on true parameter values. Data and models include fixed and
random effects for both abundance and detection processes. All data and inference
models include mixture components. Each plot presents one simulated dataset.
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Data: Exponential

Figure A.2 Caterpillar plots of posterior parameter estimates from all models fit to the simu-
lated non-mixture exponential dataset (from simulations involving covariates and
random effects). Black and orange lines depict central 95% and 50% credible
intervals, respectively. The black dot is the posterior meadian. The blue ’X’ is
the true parameter value and is positioned on the correctly specified model. β’s
are fixed effect parameters, σ’s are random effect standard deviations, and γ is a
mixing parameter. Parameters designated with an ’A’ are abundance parameters;
those designated with a ’D’ are detection parameters.



80

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

β1
A β2

A β3
A β4

A

β1
D β2

D β3
D β4

D

β5
D γ InterceptA InterceptD

Shape σA1
2 σA2

2 σD
2

Exponential
Exponential Mix

Gamma Mix
Lognormal Mix

Weibull Mix

Exponential
Exponential Mix

Gamma Mix
Lognormal Mix

Weibull Mix

Exponential
Exponential Mix

Gamma Mix
Lognormal Mix

Weibull Mix

Exponential
Exponential Mix

Gamma Mix
Lognormal Mix

Weibull Mix

0.0 0.1 0.2 −0.2 0.0 0.2 −0.2 0.0 0.2 0.4 −1.50 −1.25 −1.00 −0.75

−0.25 0.00 0.25 0.50 0.75 −0.4 −0.3 −0.2 −0.1 0.0 0.1 −0.1 0.0 0.1 0.2 0.3 0.0 0.4 0.8

−1.0 −0.5 0.0 0.6 0.7 0.8 0.9 1.00.4 0.8 1.2 1.6 −4 −3 −2 −1

1 2 3 0.2 0.4 0.6 0.8 0.1 0.2 0.3 0.0 0.2 0.4 0.6

Parameter Estimate

M
od

el

Data: Exponential Mixture

Figure A.3 Caterpillar plots of posterior parameter estimates from all models fit to the sim-
ulated exponential mixture dataset (from simulations involving covariates and
random effects). Black and orange lines depict central 95% and 50% credible
intervals, respectively. The black dot is the posterior meadian. The blue ’X’ is
the true parameter value and is positioned on the correctly specified model. β’s
are fixed effect parameters, σ’s are random effect standard deviations, and γ is a
mixing parameter. Parameters designated with an ’A’ are abundance parameters;
those designated with a ’D’ are detection parameters.
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Figure A.4 Caterpillar plots of posterior parameter estimates from all models fit to the simu-
lated nonpeaked non-mixture gamma dataset (from simulations involving covari-
ates and random effects). Black and orange lines depict central 95% and 50%
credible intervals, respectively. The black dot is the posterior meadian. The blue
’X’ is the true parameter value and is positioned on the correctly specified model.
β’s are fixed effect parameters, σ’s are random effect standard deviations, and γ
is a mixing parameter. Parameters designated with an ’A’ are abundance param-
eters; those designated with a ’D’ are detection parameters.
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Figure A.5 Caterpillar plots of posterior parameter estimates from all models fit to the sim-
ulated nonpeaked gamma mixture dataset (from simulations involving covariates
and random effects). Black and orange lines depict central 95% and 50% credible
intervals, respectively. The black dot is the posterior meadian. The blue ’X’ is
the true parameter value and is positioned on the correctly specified model. β’s
are fixed effect parameters, σ’s are random effect standard deviations, and γ is a
mixing parameter. Parameters designated with an ’A’ are abundance parameters;
those designated with a ’D’ are detection parameters.
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Figure A.6 Caterpillar plots of posterior parameter estimates from all models fit to the simu-
lated peaked non-mixture gamma dataset (from simulations involving covariates
and random effects). Black and orange lines depict central 95% and 50% credible
intervals, respectively. The black dot is the posterior meadian. The blue ’X’ is
the true parameter value and is positioned on the correctly specified model. β’s
are fixed effect parameters, σ’s are random effect standard deviations, and γ is a
mixing parameter. Parameters designated with an ’A’ are abundance parameters;
those designated with a ’D’ are detection parameters.
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Figure A.7 Caterpillar plots of posterior parameter estimates from all models fit to the simu-
lated peaked gamma mixture dataset (from simulations involving covariates and
random effects). Black and orange lines depict central 95% and 50% credible
intervals, respectively. The black dot is the posterior meadian. The blue ’X’ is
the true parameter value and is positioned on the correctly specified model. β’s
are fixed effect parameters, σ’s are random effect standard deviations, and γ is a
mixing parameter. Parameters designated with an ’A’ are abundance parameters;
those designated with a ’D’ are detection parameters.
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Data: Lognormal Nonpeaked

Figure A.8 Caterpillar plots of posterior parameter estimates from all models fit to the sim-
ulated nonpeaked non-mixture lognormal dataset (from simulations involving co-
variates and random effects). Black and orange lines depict central 95% and 50%
credible intervals, respectively. The black dot is the posterior meadian. The blue
’X’ is the true parameter value and is positioned on the correctly specified model.
β’s are fixed effect parameters, σ’s are random effect standard deviations, and γ
is a mixing parameter. Parameters designated with an ’A’ are abundance param-
eters; those designated with a ’D’ are detection parameters.
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Data: Lognormal Nonpeaked Mixture

Figure A.9 Caterpillar plots of posterior parameter estimates from all models fit to the simu-
lated nonpeaked lognormal mixture dataset (from simulations involving covariates
and random effects). Black and orange lines depict central 95% and 50% credible
intervals, respectively. The black dot is the posterior meadian. The blue ’X’ is
the true parameter value and is positioned on the correctly specified model. β’s
are fixed effect parameters, σ’s are random effect standard deviations, and γ is a
mixing parameter. Parameters designated with an ’A’ are abundance parameters;
those designated with a ’D’ are detection parameters.
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Figure A.10 Caterpillar plots of posterior parameter estimates from all models fit to the sim-
ulated peaked non-mixture lognormal dataset (from simulations involving covari-
ates and random effects). Black and orange lines depict central 95% and 50%
credible intervals, respectively. The black dot is the posterior meadian. The
blue ’X’ is the true parameter value and is positioned on the correctly specified
model. β’s are fixed effect parameters, σ’s are random effect standard deviations,
and γ is a mixing parameter. Parameters designated with an ’A’ are abundance
parameters; those designated with a ’D’ are detection parameters.
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Figure A.11 Caterpillar plots of posterior parameter estimates from all models fit to the sim-
ulated peaked lognormal mixture dataset (from simulations involving covariates
and random effects). Black and orange lines depict central 95% and 50% credi-
ble intervals, respectively. The black dot is the posterior meadian. The blue ’X’
is the true parameter value and is positioned on the correctly specified model.
β’s are fixed effect parameters, σ’s are random effect standard deviations, and
γ is a mixing parameter. Parameters designated with an ’A’ are abundance
parameters; those designated with a ’D’ are detection parameters.
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Figure A.12 Caterpillar plots of posterior parameter estimates from all models fit to the sim-
ulated nonpeaked non-mixture Weibull dataset (from simulations involving co-
variates and random effects). Black and orange lines depict central 95% and
50% credible intervals, respectively. The black dot is the posterior meadian. The
blue ’X’ is the true parameter value and is positioned on the correctly specified
model. β’s are fixed effect parameters, σ’s are random effect standard deviations,
and γ is a mixing parameter. Parameters designated with an ’A’ are abundance
parameters; those designated with a ’D’ are detection parameters.
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Figure A.13 Caterpillar plots of posterior parameter estimates from all models fit to the simu-
lated nonpeaked Weibull mixture dataset (from simulations involving covariates
and random effects). Black and orange lines depict central 95% and 50% credi-
ble intervals, respectively. The black dot is the posterior meadian. The blue ’X’
is the true parameter value and is positioned on the correctly specified model.
β’s are fixed effect parameters, σ’s are random effect standard deviations, and
γ is a mixing parameter. Parameters designated with an ’A’ are abundance
parameters; those designated with a ’D’ are detection parameters.
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Figure A.14 Caterpillar plots of posterior parameter estimates from all models fit to the simu-
lated peaked non-mixture Weibull dataset (from simulations involving covariates
and random effects). Black and orange lines depict central 95% and 50% credi-
ble intervals, respectively. The black dot is the posterior meadian. The blue ’X’
is the true parameter value and is positioned on the correctly specified model.
β’s are fixed effect parameters, σ’s are random effect standard deviations, and
γ is a mixing parameter. Parameters designated with an ’A’ are abundance
parameters; those designated with a ’D’ are detection parameters.
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Figure A.15 Caterpillar plots of posterior parameter estimates from all models fit to the simu-
lated peaked Weibull mixture dataset (from simulations involving covariates and
random effects). Black and orange lines depict central 95% and 50% credible
intervals, respectively. The black dot is the posterior meadian. The blue ’X’
is the true parameter value and is positioned on the correctly specified model.
β’s are fixed effect parameters, σ’s are random effect standard deviations, and
γ is a mixing parameter. Parameters designated with an ’A’ are abundance
parameters; those designated with a ’D’ are detection parameters.
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APPENDIX B. SUPPORTING DERIVATIONS, TABLES, AND
FIGURES FOR CHAPTER 3

Data simulation

In Section 3.3.6, we described a process for simulating datasets from event, state, and
combined models with known expected abundance, availability, and perceptibility parameters.
However, the steps are different for creating datasets with a fixed number of observations such
as we used in our simulation studies, because we simulate from a known count n(obs) and
vector of relative abundances λ′ rather than from a vector of known expected abundances
λ. The first step is to randomly draw the number of observed individuals at each survey,
for which the following fact is useful. Assuming a vector n(obs) of S independent Poisson
random variables with expectations αλ′1p1(det), . . . , αλ′SpS(det) where α is constant that scales
relative abundance to expected abundance (α = λ/λ′), if we constrain the sum of those random

variables such that
∑S

s=1 n
(obs)
s = n(obs), it follows that n(obs) ∼ Mult(n(obs),p) where ps =

λ′sps(det)/
∑S

i=1 λ
′
ipi(det). After we draw n(obs) in this way, then for each survey we randomly

sample individuals, each with its own distance (rsi), state-perceptibility, and detection time
(tsi) following steps (ii)-(iv) from Section 3.3.6. We discard individuals that are either not
state-perceptible or not detected during the survey period (i.e., tsi > C), and we keep sampling

individuals until we have n
(obs)
s at each survey.

Technically, in the above simulation the true total abundance
(∑S

s=1 αλ
′
s

)
is unknown,

which means that estimates of bias (such as in Table 3.1) are based on an estimate of the

expected abundance
(∑S

s=1 α̂λ
′
s

)
across all possible simulations. We choose the estimator

α̂ = n(obs)/λ′p, where the bar notation denotes the average across all surveys. This estimator
is the maximum likelihood estimate, but it is also derived from the asymptotic behavior of
E(α|n(obs),λ′,p) as S →∞.

We now calculate the bias of α̂ as a substitute for E(α|n(obs),λ′,p) in our simulation
studies. It can be shown via Bayes Rule that:

E(α|n(obs),λ′,p) =

∞∫
0

α
p(n(obs)|α,λ′,p) fα|λ′,p(α|λ′,p)

p(n(obs)|λ′,p)
dα

=

∞∫
0

exp
(
−α

∑S
i=1 λ

′
ipi

)
α1+n(obs)

fα|λ′,p(α|λ′,p) dα

∞∫
0

exp
(
−α

∑S
i=1 λ

′
ipi

)
αn

(obs)
fα|λ′,p(α|λ′,p) dα

The choice of a prior density fα|λ′,p(α|λ′,p) matters little for large simulations so long as it is
relatively non-informative. As an example, let us choose an improper uniform prior on 0 < α <
∞. Because both the numerator and denominator above simplify to kernels of gamma densities,
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we solve E(α|n(obs),λ′,p) = α̂+ (λ′pS)−1, and the second term shrinks to zero as S →∞. In
our simulations we used S = 200, λi = λ, and pi = p, meaning that even when p = 0.16, the
discrepancy in survey-level abundance estimates was only

(
E
(
α|n(obs),λ′,p

)
− α̂

)
λ = 0.03.

It is worth noting that the improper uniform prior on α is not a good prior (Kahn, 1987; Link,
2013). More often, N-mixture models invoke an improper 1/α prior, for which it happens that
α̂ and E(α|n(obs),λ′,p) are equivalent.

Supplemental equations for analyses of interval-censored data involving
constant availability rates

Terminology:

• We define equations for a single survey of duration C; we avoid survey subscripts

• T = random variable for time-to-detection (0 < T <∞)

• R = random variable for distance-to-detection (0 < R < w)

• ϕ = Constant availability rate

• f(r) = 2r/w2 = a uniform density of individuals in a circulary survey of radius w

• gS(r) = exp(−(r/wσS)2) = state perceptibility function

• gE(r) = exp(−(r/wσE)2) = event perceptibility function

In this section, we consider the analysis of interval-censored detection times and/or dis-
tances. Our goal is to provide, for each model and each censoring scenario, the joint distri-
bution of detected times and distances based on detection fR,T |det(r, t|det). Where applicable,
we discuss numeric approximation of non-analytic integrals. We omit survey subscripts for
notational simplicity.

State model

The state model is the easy case. For a state model, average perceptibility at a survey is:

pp =

∫ w

0
gS(r)fR(r)dr =

∫ w

0

2r

w2
gS(r)dr = σ2S

(
1− gS(w)

)
(B.1)

This integral appears frequently with half-normal perceptibility functions.
In a state model, a proportion (1 − gS(r)) of available animals at any distance will never

be detected, even in a survey of infinite duration. Therefore, if we do not condition on de-
tection, neither the density for time to detection given distance fT |R(t|r) nor the joint density
of detection times and distances fR,T (r, t) is a proper probability distribution (i.e., the total
probability is less than one). We address this below by specifying a point-mass at t =∞. Note
that the state-model assumption of independence between observed distances fR|det(r|det) and
times fT |det(t|det) leads to easy integration in step (B.4).

fT |R(t|r) = gS(r)ϕ e−ϕt + (1− gS(r))I(t =∞) (B.2)

fR,T (r, t) =
2r

w2
gS(r)ϕ e−ϕt +

2r

w2
(1− gS(r))I(t =∞) (B.3)

p(det) =

w∫
0

C∫
0

fR,T (r, t) dt dr = σ2S
(
1− gS(w)

) (
1− e−ϕC

)
(B.4)
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Censored distances, times, or both

For a time t and a distance r in interval R′ = (rL, rU ):

p(r ∈ R′, t |det) =

∫ rU
rL

fR,T (r, t) dr

p(det)
=
σ2S
(
ϕe−ϕt

) (
gS(rL)− gS(rU )

)
p(det)

(B.5)

For a distance r and a time t in interval T ′ = (tL, tU ):

p(r, t ∈ T ′ |det) =

∫ rU
rL

fR,T (r, t) dt

p(det)
=

2r gS(r)
(
e−ϕtL − e−ϕtU

)
w2 p(det)

(B.6)

For data that are both distance- and time-censored so that (r, t) ∈ R′×T ′, independence within
fR,T |det(r, t|det) makes the integration straight-forward:

p(r ∈ R′, t ∈ T ′ |det) =

∫ rU
rL

∫ tU
tL
fR,T (r, t) dt dr

p(det)
=
σ2S
(
e−ϕtL − e−ϕtU

)
(gS(rL)− gS(rU ))

p(det)
(B.7)

Event model

For the event model, it is useful to know (e.g. in Equation (B.11)):

∂e−g
E(r)ϕt

∂r
=

2rgE(r)ϕte−g
E(r)ϕt

w2σ2E
(B.8)

Noting that fT |R(t|r) ∼ Exponential
(
gE(r)ϕ

)
, we introduce the probability distributions:

fT |R(t|r) = gE(r)ϕ e−g
E(r)ϕt (B.9)

fR,T (r, t) =
2r

w2
gE(r)ϕ e−g

E(r)ϕt (B.10)

We defer the calculation of p(det) until the doubly-censored case below.

Censored distances, times, or both

For a time t and a distance r in interval R′ = (rL, rU ):

p(r ∈ R′, t |det) =

∫ rU
rL

fR,T (r, t) dr

p(det)
=
σ2E
(
e−g(rU )ϕt − e−g(rL)ϕt

)
t p(det)

(B.11)

For a distance r and a time t in interval T ′ = (tL, tU ):

p(r, t ∈ T ′ |det) =

∫ rU
rL

fR,T (r, t) dt

p(det)
=

2r
(
e−g

E(r)ϕtL − e−gE(r)ϕtU
)

w2 p(det)
(B.12)

Before calculating detection probabilities for distance- and time-censored analysis, we pause to
introduce notation and a couple of identities for the exponential integral E1(·):

E1(x) =

∫ ∞
x

e−t

t
dt (B.13)

aE1(bx) =

∫ ∞
x

ae−bt

t
dt (B.14)∫ xU

xL

ae−bt

t
dt = aE1(bxL)− aE1(bxU ) (B.15)
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To find the joint detection probability for distance- and time-censored data, we integrate Equa-
tion (B.11):

p(r ∈ R′, t ∈ T ′ |det) =

∫ tU

tL

p(r ∈ R′, t | det) dt (B.16)

=
1

p(det)

∫ tU

tL

σ2E

[
e−g(rU )ϕt

t
− e−g(rL)ϕt

t

]
dt (B.17)

=
σ2E
[
E1(g(rU )ϕtL)− E1(g(rU )ϕtU )− E1(g(rL)ϕtL) + E1(g(rL)ϕtU )

]
p(det)

(B.18)

The exponential integral is undefined at zero: lim
x→0

E1(x) =∞. Fortunately, via series expansion

it can be shown that lim
x→0

(E1(x)− E1(ax)) = log a. So, when tL = 0, then

E1(g(rU )ϕtL)− E1(g(rL)ϕtL) = log

(
g(rL)ϕ

g(rU )ϕ

)
=
r2U − r2L
(σEw)2

(B.19)

To calculate p(det), we observe that p(det) is the numerator of Equation (B.18) when R′ =
(0, w) and T ′ = (0, C). Applying Equation (B.19) yields:

p(det) = 1− σ2E
[
E1

(
gE(w)ϕC

)
− E1(ϕC)

]
(B.20)

To calculate p(det) within a Stan model (see model code later in Appendix), we modified a
numeric recipe from Press (1992) to create a user-defined function.

Combined model

We begin with the same distributions:

fT |R(t|r) = gS(r)gE(r)ϕe−g
E(r)ϕt (B.21)

fR,T (r, t) =
2r

w2
gS(r)gE(r)ϕe−g

E(r)ϕt (B.22)

Censored distances, times, or both

For a distance r and a time t in interval T ′ = (tL, tU ):

p(r, t ∈ T ′ | det) =

∫ tU
tL
fR,T (r, t) dt

p(det)
=

2r gS(r)
(
exp

(
−gE(r)ϕtL

)
− exp

(
−gE(r)ϕtU

))
w2 p(det)

(B.23)

For the two remaining censored probability functions and for the survey-level detection prob-
ability, there is no algebraic simplification:

p(r ∈ R′, t | det) =

∫ rU

rL

fR,T |det(r, t|det) dr (B.24)

p(r ∈ R′, t ∈ T ′ | det) =

∫ rU

rL

p(r, t ∈ T ′ |det) dr (B.25)

p(det) =
2

w2

w∫
0

rgS(r)
[
1− e−gE(r)ϕC

]
dr (B.26)
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In all three cases, solution requires an integration of the generic form:

w∫
0

re−ar
2
e−be

−cr2

dr (B.27)

To calculate p(det), we used integration-by-parts to derive a series approximation to Equation
(B.27). Because the second term in Equation (B.29) below has the same form as the original
integral on the left-hand side of Eq. (B.28), we are able to apply integration-by-parts iteratively
to an arbitrary precision.

w∫
0

re−ar
2
e−be

−cr2

dr =

w∫
0

e−be
−cr2 ∂

∂r

(
−e
−ar2

2a

)
dr (B.28)

=

(
−e
−ar2e−be

−cr2

2a

)r=w
r=0

+
bc

a

w∫
0

re−(a+c)r
2
e−be

−cr2

dr (B.29)

= −e
−ar2e−be

−cr2

2

∞∑
j=0

(bc)je−jcr
2

j∏
i=0

(a+ ic)


∣∣∣∣∣∣∣∣∣
r=w

r=0

(B.30)

=
e−b

2

∞∑
j=0

 (bc)j

j∏
i=0

(a+ ic)

− e−aw
2
e−be

−cw2

2

∞∑
j=0

(bc)je−jcw
2

j∏
i=0

(a+ ic)

 (B.31)

Substituting a = 1/(σSw)2, b = ϕC, and c = 1/(σEw)2 yields an infinite sum for the (expanded)
second term of the integrand in Eq. (B.26). As for the first term of the expanded integral in
Eq. (B.26), we have already seen it before back in Eq. (B.1). There may be computationally
faster approximations possible.

Stan Models

State Model

# This model fits datasets using survey -level perceptibility.

# Notes: the original model in Amundson et al.:

# (1) has zero -inflated abundance

# (2) does not allow for group heterogeneity in availability

# Note: the only changes vis -a-vis event -level model are:

# (1) pdet|r = g(r) * (1-exp(-phi * tau))

# (2) the distribution for f_{t,r|det} is here: f_t * f_r / pdet ... i.e. f_{t,r} =

independent product of f_t * f_r

functions{

real g_r(real r, real sigma){

return exp(-(r/sigma)^2);

}

}
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data {

# Data dimensions

int <lower=0> n_surv; # Number of surveys

int <lower=0> n_bird; # Total birds counted

int <lower=1,upper=2> groups; # Number of behavioral groups to be modeled (only two for

now)

# Methodologically defined parameters

real <lower=0> tau; # Duration of surveys

real <lower=0> maxdist; # Maximum distance used

# Fixed Effects

int <lower=0> n_bab; # Number of abundance fixed effects

int <lower=0> n_bavl; # Number of availability fixed effects

int <lower=0> n_bpst; # Number of state perceptibility fixed effects

matrix[n_surv ,n_bab] Xab; # Abundance fixed effect covariates

matrix[n_surv ,n_bavl] Xavl; # Availability fixed effect covariates

matrix[n_surv ,n_bpst] Xpst; # State perceptibility fixed effect covariates

# Random Effects

int <lower=0> n_rab; # Number of abundance random effects

int <lower=0> n_ravl; # Number of availability random effects

int <lower=0> n_rpst; # Number of state perceptibility random effects

int <lower=0> n_rabs[n_rab ]; # Number of levels for each abundance random effect

--- an (n_rab)-length vector

int <lower=0> n_ravls[n_ravl ]; # Number of levels for each availability random

effect --- an (n_ravl)-length vector

int <lower=0> n_rpsts[n_rpst ]; # Number of levels for each state perceptibility

random effect --- an (n_rpst)-length vector

int <lower=1> vab_id[sum(n_rabs)]; # Effect -category ID for each effect level --- this

is a vector of indices.

# length(vab_id) = total number of abundance random effect levels across all random

effects = sum(n_rabs).

int <lower=1> vavl_id[sum(n_ravls)]; # Effect -category ID for each effect level --- this

is a vector of indices.

int <lower=1> vpst_id[sum(n_rpsts)]; # Effect -category ID for each effect level --- this

is a vector of indices.

int Zab[n_surv ,n_rab ]; # Matrix of random effect levels associated with

each survey

int Zavl[n_surv ,n_ravl ];

int Zpst[n_surv ,n_rpst ];

# Counts and times

int <lower=0> n_bysurv[n_surv ]; # Counts by survey

real <lower=0> time_obs[n_bird ]; # Observed detection times

real <lower=0> dist_obs[n_bird ]; # Observed distances

int <lower=1, upper=n_surv > surv_obs[n_bird ]; # Survey ID associated with each bird

detected

}

transformed data {

}

parameters {

# Fixed effects

real intcpt_ab; # Abundance intercept

real intcpt_avl; # Availability intercept

real intcpt_pst; # State perceptibility intercept

vector <lower =0>[groups -1] intcpt_g; # Difference between hard - and easy -to-detect

intercepts

vector[n_bab] bab; # Abundance fixed effects

vector[n_bavl] bavl; # Availability fixed effects

vector[n_bpst] bpst; # State perceptibility fixed effects
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# Random effects

vector <lower =0>[n_rab] sigma_ab; # Abundance random effect standard deviation(s)

vector <lower =0>[ n_ravl] sigma_avl; # Availability random effect standard deviation(s)

vector <lower =0>[ n_rpst] sigma_pst; # State perceptibility random effect standard

deviation(s)

vector[sum(n_rabs)] rab; # Vector of estimated abundance random effects for

all levels

vector[sum(n_ravls)] ravl; # Vector of estimated availability random effects for

all levels

vector[sum(n_rpsts)] rpst; # Vector of estimated state perceptibility random

effects for all levels

# Other parameters

vector <lower=0,upper=1>[groups -1] gamma; # Mixing parameter. gamma = hard -to -detect , (1-

gamma) = easy -to -detect

}

transformed parameters {

vector[n_surv] log_lambda; # log(expected survey abundance)

vector[n_surv] log_phi_vec; # log(fixed and rdm effects on

availability ... ignores intercepts , which vary by group)

matrix[n_surv ,groups] log_phi_avail; # log(survey availability rate parameter)

for each group

vector[n_surv] log_pst_sig; # log(distance parameter)

matrix <lower =0>[n_surv ,groups] phi_avail; # Survey availability rate parameter

matrix <lower=0, upper=1>[n_surv ,groups] pdet; # Probability of detection by survey x

group

vector <lower=0, upper=1>[ n_surv] p_surv; # Probability of detection by survey

across groups

vector <lower=0, upper=1>[ groups] mixing; # Mixing vector , sums to 1

row_vector[groups] int_vec; # Vector of detection intercepts

# expected abundance

for (s in 1: n_surv) log_lambda[s] = intcpt_ab; # Intercepts

if(n_bab > 0) log_lambda = log_lambda + Xab*bab; # Fixed effects

if(n_rab > 0)

for (s in 1: n_surv)

for (i in 1:n_rab) log_lambda[s] = log_lambda[s] + rab[Zab[s,i]]; # Random effects

# Availability rate

if(n_bavl > 0)

log_phi_vec = Xavl*bavl; # Fixed

effects

else

for(s in 1: n_surv) log_phi_vec[s] = 0;

if(n_ravl > 0)

for (s in 1: n_surv)

for (i in 1: n_ravl) log_phi_vec[s] = log_phi_vec[s] + ravl[Zavl[s,i]]; # Random

effects

int_vec [1] = intcpt_avl;

if (groups ==2) int_vec [2] = intcpt_avl + intcpt_g [1];

log_phi_avail = rep_matrix(log_phi_vec , groups) + rep_matrix(int_vec , n_surv); #

Intercepts

phi_avail = exp(log_phi_avail);

# State perceptibility parameter

for (s in 1: n_surv) log_pst_sig[s] = intcpt_pst; # Intercepts

if(n_bpst > 0) log_pst_sig = log_pst_sig + Xpst*bpst; # Fixed

effects

if(n_rpst > 0)

for (s in 1: n_surv)

for (i in 1: n_rpst) log_pst_sig[s] = log_pst_sig[s] + rpst[Zpst[s,i]]; # Random

effects
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# Detection probability by survey -group

for(s in 1: n_surv){

for(g in 1: groups){

pdet[s,g] = exp(2* log_pst_sig[s]) * exponential_cdf(tau , phi_avail[s,g]) * (1 - g_r

(1, exp(log_pst_sig[s])));

}

}

# Mixing and detection probability by survey

if(groups ==1) mixing [1]=1;

if(groups ==2){

mixing [1] = gamma [1];

mixing [2] = 1-gamma [1];

}

p_surv = pdet * mixing;

}

model {

# Fixed effect priors

if (n_bab > 0) bab ~ normal (0,1);

if (n_bavl > 0) bavl ~ normal (0,1);

if (n_bpst > 0) bpst ~ normal (0,1);

intcpt_ab ~ normal (1.5 ,1); # Prior expected abundance: median = 4.48, 95% CI =

(0.631 , 31.8)

intcpt_avl ~ normal (-1.8,1); # Prior Pr(avail): median = 0.809, 95% CI = (0.208 ,

1.00)

# Below ~30% availability , binomial abundance models are unreliable.

# At upper end of CI , phi = 1.17, leading to Pr(t_avail < 2) = 90%. This

may be low for some species ,

# but if that is the case , then non -availability is not an issue.

if (groups ==2) intcpt_g ~ exponential (0.5);

intcpt_pst ~ normal (0.35 ,1); # Prior Pr(det|avail): median = 0.79, 95% CI = (0.040 ,

0.995)

# MC estimates (n=10000) of prior on Pr(detection): median = 0.47, 95% CI = (0.02, 0.98)

# Random effect priors

if(n_rab > 0) for (i in 1:sum(n_rabs)) rab[i] ~ normal(0,sigma_ab[vab_id[i]]);

if(n_ravl > 0) for (i in 1:sum(n_ravls)) ravl[i] ~ normal(0,sigma_avl[vavl_id[i]]);

if(n_rpst > 0) for (i in 1:sum(n_rpsts)) rpst[i] ~ normal(0,sigma_pst[vpst_id[i]]);

if(n_rab > 0) sigma_ab ~ cauchy (0,1);

if(n_ravl > 0) sigma_avl ~ cauchy (0,1);

if(n_rpst > 0) sigma_pst ~ cauchy (0,1);

# Other parameter priors

if (groups ==2) gamma ~ beta (1,1);

# Data models

n_bysurv ~ poisson_log(log(p_surv) + log_lambda);

# Increment the log -likelihood for the joint distribution of (r,t):

for(b in 1: n_bird){ # log(f_{r,t}|det) = log(f_r|det) + log(f_t|det) in this

model

# log(f_r|det) = log(2r/w^2 * g(r)) = constant + log(r) + log(g(r))

target += log(dist_obs[b]) +

log(g_r(dist_obs[b], exp(log_pst_sig[surv_obs[b]])*maxdist));

}

if (groups ==2) for(b in 1: n_bird){

# f_t|det = [gamma*dexp(t,phi1) + (1-gamma)*dexp(t,phi2)] / pdet

target += log(mixing [1] * exp(exponential_lpdf(time_obs[b] | phi_avail[surv_obs[b],1])

) +

mixing [2] * exp(exponential_lpdf(time_obs[b] | phi_avail[surv_obs[b],2])

)) -

log(p_surv[surv_obs[b]]);

}

if (groups ==1) for(b in 1: n_bird){
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target += exponential_lpdf(time_obs[b] | phi_avail[surv_obs[b],1]) -

log(p_surv[surv_obs[b]]);

}

}

generated quantities {

int <lower=0> unobserved[n_surv ]; # Sampled uncounted birds

int <lower=0> totN[n_surv ]; # Sampled total birds

real <lower=0,upper=1> global_p; # Sampled overall detection probability

vector <upper =0>[ n_surv] log_lik; # LogLikelhood for LOO / WAIC calculations. Survey

is the observational unit.

# Surprisingly , neither TotN nor global_p can be vectorized:

for (s in 1: n_surv) {

unobserved[s] = poisson_rng(exp(log_lambda[s] + log(1-p_surv[s]))); # Uncounted ~ Po(\

lambda *(1-p))

totN[s] = n_bysurv[s] + unobserved[s];

log_lik[s] = poisson_log_lpmf(n_bysurv[s] | log(p_surv[s]) + log_lambda[s]);

}

# Calculate log -likelihood for (n, r, t | \lambda , \varphi , \sigma)... same as above

if(groups ==2) for(b in 1: n_bird){

log_lik[surv_obs[b]] = log_lik[surv_obs[b]] + log(2) - 2*log(maxdist) +

log(dist_obs[b]) + log(g_r(dist_obs[b], exp(log_pst_sig[surv_obs[b]])*

maxdist)) +

log(mixing [1] * exp(exponential_lpdf(time_obs[b] | phi_avail[surv_obs[b

],1])) +

mixing [2] * exp(exponential_lpdf(time_obs[b] | phi_avail[surv_obs[b

],2]))) -

log(p_surv[surv_obs[b]]);

}

if(groups ==1) for(b in 1: n_bird){

log_lik[surv_obs[b]] = log_lik[surv_obs[b]] + log(2) - 2*log(maxdist) +

log(dist_obs[b]) + log(g_r(dist_obs[b], exp(log_pst_sig[surv_obs[b]])*

maxdist)) +

exponential_lpdf(time_obs[b] | phi_avail[surv_obs[b],1]) -

log(p_surv[surv_obs[b]]);

}

# This calculation is split into 2 pieces , because of integers , reals , and the C++

oddity that: int/int = int

global_p = sum(n_bysurv);

global_p = global_p / sum(totN);

// totN[s] = n_bysurv[s] + unobserved[s];

// for (i in 1: n_ints) {

// yrep[s,i] = poisson_rng(exp(log_mu_ab[ii[s]+i]));

// p_int[i] = exp(log_p[s,i]); # Estimated p[s,i]

// lpn_BK[s,i] = poisson_log(y[s,i], exp(log_mu_ab[ii[s]+i]));

// dev1 = dev1 - 2 * lpn_BK[s,i];

// }

}
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Event Model

##### Outstanding Issues:

functions{

# This code fits the exponential integral aka E1().

# Code is adapted from "Numerical Recipes in C", chapter 6.3:

# http :// www.aip.de/groups/soe/local/numres/bookcpdf/c6 -3.pdf

real E1(real x){

int MAXIT;

real a;

real b;

real c;

real d;

real del;

real fact;

real h;

real ans;

real EULER;

real EPS;

real FPMIN;

EULER =0.57721566490153286060651209008240243104215933593992;

MAXIT =100;

FPMIN =1.0e-30;

EPS =1.0e-7;

if (x < 0.0 || (x==0.0)){

reject ("Bad arguments in expint ");

} else {

if (x > 1.0) {

b = x+1.0;

c = 1.0/ FPMIN;

d = 1.0/b;

h = d;

for (i in 1:MAXIT){

a = -i*(i);

b = b+2.0;

d = 1.0/(a*d+b);

c = b+a/c;

del = c*d;

h = h*del;

if (fabs(del -1.0) < EPS) {

ans=h*exp(-x);

return ans;

}

}

reject (" Continued fraction failed in expint ");

} else {

ans = -log(x)-EULER; // Set first term.

fact = 1.0;

for (i in 1:MAXIT){

fact = -(x/i)*fact;

del = -fact/i;

ans = ans + del;

if (fabs(del) < fabs(ans)*EPS) return ans;

}

reject (" Series failed in expint ");

}

}

return ans;

}

real g_r(real r, real sigma){

return exp(-(r/sigma)^2);

}

}
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data {

# Data dimensions

int <lower=0> n_surv; # Number of surveys

int <lower=0> n_bird; # Total birds counted

int <lower=1,upper=2> groups; # Number of behavioral groups to be modeled (only two for

now)

# Methodologically defined parameters

real <lower=0> tau; # Duration of surveys

real <lower=0> maxdist; # Maximum distance used

# Fixed Effects

int <lower=0> n_bab; # Number of abundance fixed effects

int <lower=0> n_bavl; # Number of availability fixed effects

int <lower=0> n_bpev; # Number of event perceptibility fixed effects

matrix[n_surv ,n_bab] Xab; # Abundance fixed effect covariates

matrix[n_surv ,n_bavl] Xavl; # Availability fixed effect covariates

matrix[n_surv ,n_bpev] Xpev; # Event perceptibility fixed effect covariates

# Random Effects

int <lower=0> n_rab; # Number of abundance random effects

int <lower=0> n_ravl; # Number of availability random effects

int <lower=0> n_rpev; # Number of event perceptibility random effects

int <lower=0> n_rabs[n_rab ]; # Number of levels for each abundance random effect

--- an (n_rab)-length vector

int <lower=0> n_ravls[n_ravl ]; # Number of levels for each availability random

effect --- an (n_ravl)-length vector

int <lower=0> n_rpevs[n_rpev ]; # Number of levels for each event perceptibility

random effect --- an (n_rpev)-length vector

int <lower=1> vab_id[sum(n_rabs)]; # Effect -category ID for each effect level --- this

is a vector of indices.

# length(vab_id) = total number of abundance random effect levels across all random

effects = sum(n_rabs).

int <lower=1> vavl_id[sum(n_ravls)]; # Effect -category ID for each effect level --- this

is a vector of indices.

int <lower=1> vpev_id[sum(n_rpevs)]; # Effect -category ID for each effect level --- this

is a vector of indices.

int Zab[n_surv ,n_rab ]; # Matrix of random effect levels associated with

each survey

int Zavl[n_surv ,n_ravl ];

int Zpev[n_surv ,n_rpev ];

# Counts and times

int <lower=0> n_bysurv[n_surv ]; # Counts by survey

real <lower=0> time_obs[n_bird ]; # Observed detection times

real <lower=0> dist_obs[n_bird ]; # Observed distances

int <lower=1, upper=n_surv > surv_obs[n_bird ]; # Survey ID associated with each bird

detected

}

transformed data {

}

parameters {

# Fixed effects

real intcpt_ab; # Abundance intercept

real intcpt_avl; # Availability intercept

real intcpt_pev; # Event perceptibility intercept

vector <lower =0>[groups -1] intcpt_g; # Difference between hard - and easy -to-detect

intercepts

vector[n_bab] bab; # Abundance fixed effects
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vector[n_bavl] bavl; # Availability fixed effects

vector[n_bpev] bpev; # Event perceptibility fixed effects

# Random effects

vector <lower =0>[n_rab] sigma_ab; # Abundance random effect standard deviation(s)

vector <lower =0>[ n_ravl] sigma_avl; # Availability random effect standard deviation(s)

vector <lower =0>[ n_rpev] sigma_pev; # Event perceptibility random effect standard

deviation(s)

vector[sum(n_rabs)] rab; # Vector of estimated abundance random effects for

all levels

vector[sum(n_ravls)] ravl; # Vector of estimated availability random effects for

all levels

vector[sum(n_rpevs)] rpev; # Vector of estimated event perceptibility random

effects for all levels

# Other parameters

vector <lower=0,upper=1>[groups -1] gamma; # Mixing parameter. gamma = hard -to-detect , (1-

gamma) = easy -to -detect

}

transformed parameters {

vector[n_surv] log_lambda; # log(expected survey abundance)

vector[n_surv] log_phi_vec; # log(fixed and random effects on

availability ... ignores intercepts , which vary by group)

matrix[n_surv ,groups] log_phi_avail; # log(survey availability rate parameter)

for each group

vector[n_surv] log_pev_sig; # log(distance parameter)

# If we have individual -level random effects , it may be necessary to define a survey -

level rate parameter

matrix <lower =0>[n_surv ,groups] phi_avail; # Survey availability rate parameter

matrix <lower=0, upper=1>[n_surv ,groups] pdet; # Probability of detection by survey x

group

vector <lower=0, upper=1>[ n_surv] p_surv; # Probability of detection by survey

across groups

vector <lower=0, upper=1>[ groups] mixing; # Mixing vector , sums to 1

row_vector[groups] int_vec; # Vector of detection intercepts

# Expected abundance

for (s in 1: n_surv) log_lambda[s] = intcpt_ab; # Intercepts

if(n_bab > 0) log_lambda = log_lambda + Xab*bab; # Fixed effects

if(n_rab > 0)

for (s in 1: n_surv)

for (i in 1:n_rab) log_lambda[s] = log_lambda[s] + rab[Zab[s,i]]; # Random effects

# Availability rate

if(n_bavl > 0)

log_phi_vec = Xavl*bavl; # Fixed

effects

else

for(s in 1: n_surv) log_phi_vec[s] = 0;

if(n_ravl > 0)

for (s in 1: n_surv)

for (i in 1: n_ravl) log_phi_vec[s] = log_phi_vec[s] + ravl[Zavl[s,i]]; # Random

effects

int_vec [1] = intcpt_avl;

if (groups ==2) int_vec [2] = intcpt_avl + intcpt_g [1];

log_phi_avail = rep_matrix(log_phi_vec , groups) + rep_matrix(int_vec , n_surv); #

Intercepts

phi_avail = exp(log_phi_avail);

# Event perceptibility parameter

for (s in 1: n_surv) log_pev_sig[s] = intcpt_pev; # Intercepts

if(n_bpev > 0) log_pev_sig = log_pev_sig + Xpev*bpev; # Fixed

effects

if(n_rpev > 0)



105

for (s in 1: n_surv)

for (i in 1: n_rpev) log_pev_sig[s] = log_pev_sig[s] + rpev[Zpev[s,i]]; # Random

effects

# Detection probability by survey -group

for(s in 1: n_surv){

for(g in 1: groups){

pdet[s,g] = 1 + exp(2* log_pev_sig[s]) * (E1(phi_avail[s,g]*tau) - E1(phi_avail[s,g]*

tau*g_r(1, exp(log_pev_sig[s]))));

}

}

# Mixing and detection probability by survey

if(groups ==1) mixing [1]=1;

if(groups ==2){

mixing [1] = gamma [1];

mixing [2] = 1-gamma [1];

}

p_surv = pdet * mixing;

}

model {

# Fixed effect priors

if (n_bab > 0) bab ~ normal (0,1);

if (n_bavl > 0) bavl ~ normal (0,1);

if (n_bpev > 0) bpev ~ normal (0,1);

intcpt_ab ~ normal (1.5 ,1); # Prior expected abundance: median = 4.48, 95% CI =

(0.631 , 31.8)

intcpt_avl ~ normal (-1.8,1); # Prior Pr(avail): median = 0.809, 95% CI = (0.208 ,

1.00)

# Below ~30% availability , binomial abundance models are unreliable.

# At upper end of CI , phi = 1.17, leading to Pr(t_avail < 2) = 90%. This

may be low for some species ,

# but if that is the case , then non -availability is not an issue.

if (groups ==2) intcpt_g ~ exponential (0.5);

intcpt_pev ~ normal (0.35 ,1); # Prior Pr(det|avail): median = 0.79, 95% CI = (0.040 ,

0.995)

# MC estimates (n=10000) of prior on Pr(detection): median = 0.58, 95% CI = (0.02, 1.00)

# Random effect priors

if(n_rab > 0) for (i in 1:sum(n_rabs)) rab[i] ~ normal(0,sigma_ab[vab_id[i]]);

if(n_ravl > 0) for (i in 1:sum(n_ravls)) ravl[i] ~ normal(0,sigma_avl[vavl_id[i]]);

if(n_rpev > 0) for (i in 1:sum(n_rpevs)) rpev[i] ~ normal(0,sigma_pev[vpev_id[i]]);

if(n_rab > 0) sigma_ab ~ cauchy (0,1);

if(n_ravl > 0) sigma_avl ~ cauchy (0,1);

if(n_rpev > 0) sigma_pev ~ cauchy (0,1);

# Other parameter priors

if (groups ==2) gamma ~ beta (1,1);

# Data models

n_bysurv ~ poisson_log(log(p_surv) + log_lambda);

# Increment the log -likelihood for the joint distribution of (r,t):

if(groups ==2) for(b in 1: n_bird){ # See the first section of derivations.pdf for the

exposition of this beastly equation

target += log(dist_obs[b]) +

log(mixing [1]* exp(exponential_lpdf(time_obs[b] | g_r(dist_obs[b],exp(

log_pev_sig[surv_obs[b]])*maxdist)*phi_avail[surv_obs[b],1])) +

mixing [2]* exp(exponential_lpdf(time_obs[b] | g_r(dist_obs[b],exp(

log_pev_sig[surv_obs[b]])*maxdist)*phi_avail[surv_obs[b],2]))) -

log(p_surv[surv_obs[b]]);

}

if(groups ==1) for(b in 1: n_bird){ # See the first section of derivations.pdf for the

exposition of this beastly equation
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target += log(dist_obs[b]) +

exponential_lpdf(time_obs[b] | g_r(dist_obs[b],exp(log_pev_sig[surv_obs[b]])

*maxdist)*phi_avail[surv_obs[b],1]) -

log(p_surv[surv_obs[b]]);

}

}

generated quantities {

int <lower=0> unobserved[n_surv ]; # Sampled uncounted birds

int <lower=0> totN[n_surv ]; # Sampled total birds

real <lower=0,upper=1> global_p; # Sampled overall detection probability

vector <upper =0>[ n_surv] log_lik; # LogLikelhood for LOO / WAIC calculations. Survey

is the observational unit.

# Surprisingly , neither TotN nor global_p can be vectorized:

for (s in 1: n_surv) {

unobserved[s] = poisson_rng(exp(log_lambda[s] + log(1-p_surv[s]))); # Uncounted ~ Po(\

lambda *(1-p))

totN[s] = n_bysurv[s] + unobserved[s];

log_lik[s] = poisson_log_lpmf(n_bysurv[s] | log(p_surv[s]) + log_lambda[s]);

}

# Calculate log -likelihood for (n, r, t | \lambda , \varphi , \sigma)... same as above

if(groups ==2) for(b in 1: n_bird){

log_lik[surv_obs[b]] = log_lik[surv_obs[b]] + log(2) - 2*log(maxdist) + log(dist_obs[b

]) +

log(mixing [1]* exp(exponential_lpdf(time_obs[b] | g_r(dist_obs[b],exp(

log_pev_sig[surv_obs[b]])*maxdist)*phi_avail[surv_obs[b],1])) +

mixing [2]* exp(exponential_lpdf(time_obs[b] | g_r(dist_obs[b],exp(

log_pev_sig[surv_obs[b]])*maxdist)*phi_avail[surv_obs[b],2]))) -

log(p_surv[surv_obs[b]]);

}

if(groups ==1) for(b in 1: n_bird){

log_lik[surv_obs[b]] = log_lik[surv_obs[b]] + log(2) - 2*log(maxdist) + log(dist_obs[b

]) +

exponential_lpdf(time_obs[b] | g_r(dist_obs[b],exp(log_pev_sig[surv_obs[b

]])*maxdist)*phi_avail[surv_obs[b],1]) -

log(p_surv[surv_obs[b]]);

}

# This calculation is split into 2 pieces , because of integers , reals , and the C++

oddity that: int/int = int

global_p = sum(n_bysurv);

global_p = global_p / sum(totN);

// for (i in 1: n_ints) {

// yrep[s,i] = poisson_rng(exp(log_mu_ab[ii[s]+i]));

// p_int[i] = exp(log_p[s,i]); # Estimated p[s,i]

// lpn_BK[s,i] = poisson_log(y[s,i], exp(log_mu_ab[ii[s]+i]));

// dev1 = dev1 - 2 * lpn_BK[s,i];

// }

}
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Combined Model

##### Outstanding Issues:

functions{

# Perceptibility function

real g_r(real r, real sigma){

return exp(-(r/sigma)^2);

}

# Pr(detection) involves an integral that can only be approximated by an infinite sum

# ’eval_int ’ evaluates that integral at one bound of integration

# a = 1/ sigma_pst ... NOT sigma_pst ^2

# b = phi*tau (where tau = C = duration of survey)

# c = 1/ sigma_pev ... NOT sigma_pev ^2

# Code adapted from Derivations.pdf

real eval_int(real r, real a, real b, real c){

int MAXIT;

real eaebc;

real denom;

real EPS; # Tolerance

real psumj; # Partial sum through j terms

real summand;

MAXIT =50;

denom = 1;

eaebc = - 0.5 * exp(-(a*r)^2) * exp(-b*exp(-(c*r)^2));

EPS = fabs (1.0e-15 / eaebc);

psumj = 0.0;

for (j in 0:MAXIT){

denom = denom * (a^2 + j*c^2);

summand = (b*c^2)^j * exp(-j*(c*r)^2) / denom;

psumj = psumj + summand;

if (fabs(summand) < EPS) return psumj * eaebc;

}

reject ("Error ");

return 99999; # Compiler wants to see a return statement , even though the ’reject ’

statement stops the code;

}

# Calculate pdet from the eval_int () function and equations derived in Derivations.pdf

real detcalc(real w, real a, real b, real c){

real ans;

ans = (a*w)^(-2)*(1.0-exp(-(a*w)^2)) - 2/(w^2) * (eval_int(w, a, b, c) - eval_int

(0.0, a, b, c));

return ans;

}

}

data {

# Data dimensions

int <lower=0> n_surv; # Number of surveys

int <lower=0> n_bird; # Total birds counted

int <lower=1,upper=2> groups; # Number of behavioral groups to be modeled (only two for

now)

# Methodologically defined parameters

real <lower=0> tau; # Duration of surveys

real <lower=0> maxdist; # Maximum distance used

# Fixed Effects

int <lower=0> n_bab; # Number of abundance fixed effects

int <lower=0> n_bavl; # Number of availability fixed effects

int <lower=0> n_bpev; # Number of event -perceptibility fixed effects

int <lower=0> n_bpst; # Number of state -perceptibility fixed effects

matrix[n_surv ,n_bab] Xab; # Abundance fixed effect covariates

matrix[n_surv ,n_bavl] Xavl; # Availability fixed effect covariates
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matrix[n_surv ,n_bpev] Xpev; # Event -perceptibility fixed effect covariates

matrix[n_surv ,n_bpst] Xpst; # State -perceptibility fixed effect covariates

# Random Effects

int <lower=0> n_rab; # Number of abundance random effects

int <lower=0> n_ravl; # Number of availability random effects

int <lower=0> n_rpev; # Number of event -perceptibility random effects

int <lower=0> n_rpst; # Number of state -perceptibility random effects

int <lower=0> n_rabs[n_rab ]; # Vector of numbers of levels for each abundance

random effect

int <lower=0> n_ravls[n_ravl ]; # Vector of numbers of levels for each

availability random effect

int <lower=0> n_rpevs[n_rpev ]; # Vector of numbers of levels for each

perceptibility random effect

int <lower=0> n_rpsts[n_rpst ]; # Vector of numbers of levels for each

perceptibility random effect

int <lower=1> vab_id[sum(n_rabs)]; # Effect -category ID for each effect level ---

this is a vector of indices.

# length(vab_id) = total number of abundance random effect levels across all random

effects = sum(n_rabs).

int <lower=1> vavl_id[sum(n_ravls)]; # Effect -category ID for each effect level ---

this is a vector of indices.

int <lower=1> vpev_id[sum(n_rpevs)]; # Effect -category ID for each effect level --- this

is a vector of indices.

int <lower=1> vpst_id[sum(n_rpsts)]; # Effect -category ID for each effect level --- this

is a vector of indices.

int Zab[n_surv ,n_rab ]; # Matrix of random effect levels associated with

each survey

int Zavl[n_surv ,n_ravl ];

int Zpev[n_surv ,n_rpev ];

int Zpst[n_surv ,n_rpst ];

# Counts and times

int <lower=0> n_bysurv[n_surv ]; # Counts by survey

real <lower=0> time_obs[n_bird ]; # Observed detection times

real <lower=0> dist_obs[n_bird ]; # Observed distances

int <lower=1, upper=n_surv > surv_obs[n_bird ]; # Survey ID associated with each bird

detected

}

transformed data {

}

parameters {

# Fixed effects

real intcpt_ab; # Abundance intercept

real intcpt_avl; # Availability intercept

real intcpt_pev; # Event -perceptibility intercept

real intcpt_pst; # State -perceptibility intercept

vector <lower =0>[groups -1] intcpt_g; # Difference between hard - and easy -to-detect

intercepts

vector[n_bab] bab; # Abundance fixed effects

vector[n_bavl] bavl; # Availability fixed effects

vector[n_bpev] bpev; # Event -perceptibility fixed effects

vector[n_bpst] bpst; # State -perceptibility fixed effects

# Random effects

vector <lower =0>[n_rab] sigma_ab; # Abundance random effect standard deviation(s)

vector <lower =0>[ n_ravl] sigma_avl; # Availability random effect standard deviation(s)

vector <lower =0>[ n_rpev] sigma_pev; # Event -perceptibility random effect standard

deviation(s)

vector <lower =0>[ n_rpst] sigma_pst; # State -perceptibility random effect standard

deviation(s)
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vector[sum(n_rabs)] rab; # Vector of estimated abundance random effects for

all levels

vector[sum(n_ravls)] ravl; # Vector of estimated availability random effects for

all levels

vector[sum(n_rpevs)] rpev; # Vector of estimated event -perceptibility random

effects for all levels

vector[sum(n_rpsts)] rpst; # Vector of estimated state -perceptibility random

effects for all levels

# Other parameters

vector <lower=0,upper=1>[groups -1] gamma; # Mixing parameter. gamma = hard -to-detect , (1-

gamma) = easy -to -detect

}

transformed parameters {

vector[n_surv] log_lambda; # log(expected survey abundance)

vector[n_surv] log_phi_vec; # log(fixed and random effects on

availability ... ignores intercepts , which vary by group)

matrix[n_surv ,groups] log_phi_avail; # log(survey availability rate parameter)

for each group

vector[n_surv] log_pev_sig; # log(event distance parameter)

vector[n_surv] log_pst_sig; # log(state distance parameter)

# If we have individual -level random effects , it may be necessary to define a survey -

level rate parameter

matrix <lower =0>[n_surv ,groups] phi_avail; # Survey availability rate parameter

matrix <lower=0, upper=1>[n_surv ,groups] pdet; # Probability of detection by survey x

group

vector <lower=0, upper=1>[ n_surv] p_surv; # Probability of detection by survey

across groups

vector <lower=0, upper=1>[ groups] mixing; # Mixing vector , sums to 1

row_vector[groups] int_vec; # Vector of detection intercepts

# Expected abundance

for (s in 1: n_surv) log_lambda[s] = intcpt_ab; # Intercepts

if(n_bab > 0) log_lambda = log_lambda + Xab*bab; # Fixed effects

if(n_rab > 0)

for (s in 1: n_surv)

for (i in 1:n_rab) log_lambda[s] = log_lambda[s] + rab[Zab[s,i]]; # Random effects

# Availability rate

if(n_bavl > 0)

log_phi_vec = Xavl*bavl; # Fixed

effects

else

for(s in 1: n_surv) log_phi_vec[s] = 0;

if(n_ravl > 0)

for (s in 1: n_surv)

for (i in 1: n_ravl) log_phi_vec[s] = log_phi_vec[s] + ravl[Zavl[s,i]]; # Random

effects

int_vec [1] = intcpt_avl;

if (groups ==2) int_vec [2] = intcpt_avl + intcpt_g [1];

log_phi_avail = rep_matrix(log_phi_vec , groups) + rep_matrix(int_vec , n_surv); #

Intercepts

phi_avail = exp(log_phi_avail);

# Event perceptibility parameter

for (s in 1: n_surv) log_pev_sig[s] = intcpt_pev; # Intercepts

if(n_bpev > 0) log_pev_sig = log_pev_sig + Xpev*bpev; # Fixed

effects

if(n_rpev > 0)

for (s in 1: n_surv)

for (i in 1: n_rpev) log_pev_sig[s] = log_pev_sig[s] + rpev[Zpev[s,i]]; # Random

effects

# State perceptibility parameter
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for (s in 1: n_surv) log_pst_sig[s] = intcpt_pst; # Intercepts

if(n_bpst > 0) log_pst_sig = log_pst_sig + Xpst*bpst; # Fixed

effects

if(n_rpst > 0)

for (s in 1: n_surv)

for (i in 1: n_rpst) log_pst_sig[s] = log_pst_sig[s] + rpst[Zpst[s,i]]; # Random

effects

# Detection probability by survey -group

for(s in 1: n_surv){

for(g in 1: groups){

pdet[s,g] = detcalc(1, exp(-log_pst_sig[s]), tau*phi_avail[s,g], exp(-log_pev_sig[s

]));

# Function call: detcalc(real w, real a, real b, real c)

# a = 1/ sigma_s = exp(-log_pst_sig)

# b = phi*tau (where tau = C = duration of survey)

# c = 1/ sigma_e = exp(-log_pev_sig)

}

}

# Mixing and detection probability by survey

if(groups ==1) mixing [1]=1;

if(groups ==2){

mixing [1] = gamma [1];

mixing [2] = 1-gamma [1];

}

p_surv = pdet * mixing;

}

model {

# Fixed effect priors

if (n_bab > 0) bab ~ normal (0,1);

if (n_bavl > 0) bavl ~ normal (0,1);

if (n_bpev > 0) bpev ~ normal (0,1);

if (n_bpst > 0) bpst ~ normal (0,1);

intcpt_ab ~ normal (1.5 ,1); # Prior expected abundance: median = 4.48, 95% CI =

(0.631 , 31.8)

intcpt_avl ~ normal (-1.8,1); # Prior Pr(avail): median = 0.809, 95% CI = (0.208 ,

1.00)

# Below ~30% availability , binomial abundance models are unreliable.

# At upper end of CI , phi = 1.17, leading to Pr(t_avail < 2) = 90%. This

may be low for some species ,

# but if that is the case , then non -availability is not an issue.

if (groups ==2) intcpt_g ~ exponential (0.5);

intcpt_pev ~ normal (0.35 ,1); # Prior Pr(det|avail): median = 0.79, 95% CI = (0.040 ,

0.995)

intcpt_pst ~ normal (0.35 ,1); # Prior Pr(det|avail): median = 0.79, 95% CI = (0.040 ,

0.995)

# MC estimates (n=10000) of prior on Pr(detection): median = 0.35, 95% CI = (0.015 ,

0.95)

# Random effect priors

if(n_rab > 0) for (i in 1:sum(n_rabs)) rab[i] ~ normal(0,sigma_ab[vab_id[i]]);

if(n_ravl > 0) for (i in 1:sum(n_ravls)) ravl[i] ~ normal(0,sigma_avl[vavl_id[i]]);

if(n_rpev > 0) for (i in 1:sum(n_rpevs)) rpev[i] ~ normal(0,sigma_pev[vpev_id[i]]);

if(n_rpst > 0) for (i in 1:sum(n_rpsts)) rpst[i] ~ normal(0,sigma_pst[vpst_id[i]]);

if(n_rab > 0) sigma_ab ~ cauchy (0,1);

if(n_ravl > 0) sigma_avl ~ cauchy (0,1);

if(n_rpev > 0) sigma_pev ~ cauchy (0,1);

if(n_rpst > 0) sigma_pst ~ cauchy (0,1);

# Other parameter priors

if (groups ==2) gamma ~ beta (1,1);
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# Data models

n_bysurv ~ poisson_log(log(p_surv) + log_lambda);

# Increment the log -likelihood for the joint distribution of (r,t):

if(groups ==2) for(b in 1: n_bird){ # See the third section of derivations.pdf for the

exposition

target += log(dist_obs[b]) +

log(g_r(dist_obs[b], exp(log_pst_sig[surv_obs[b]])*maxdist)) +

log(mixing [1]* exp(exponential_lpdf(time_obs[b] | g_r(dist_obs[b],exp(

log_pev_sig[surv_obs[b]])*maxdist)*phi_avail[surv_obs[b],1])) +

mixing [2]* exp(exponential_lpdf(time_obs[b] | g_r(dist_obs[b],exp(

log_pev_sig[surv_obs[b]])*maxdist)*phi_avail[surv_obs[b],2]))) -

log(p_surv[surv_obs[b]]);

}

if(groups ==1) for(b in 1: n_bird){

target += log(dist_obs[b]) +

log(g_r(dist_obs[b], exp(log_pst_sig[surv_obs[b]])*maxdist)) +

exponential_lpdf(time_obs[b] | g_r(dist_obs[b],exp(log_pev_sig[surv_obs[b]])

*maxdist)*phi_avail[surv_obs[b],1]) -

log(p_surv[surv_obs[b]]);

}

}

generated quantities {

int <lower=0> unobserved[n_surv ]; # Sampled uncounted birds

int <lower=0> totN[n_surv ]; # Sampled total birds

real <lower=0,upper=1> global_p; # Sampled overall detection probability

vector <upper =0>[ n_surv] log_lik; # LogLikelhood for LOO / WAIC calculations. Survey

is the observational unit.

# Surprisingly , neither TotN nor global_p can be vectorized:

for (s in 1: n_surv) {

unobserved[s] = poisson_rng(exp(log_lambda[s] + log(1-p_surv[s]))); # Uncounted ~ Po(\

lambda *(1-p))

totN[s] = n_bysurv[s] + unobserved[s];

log_lik[s] = poisson_log_lpmf(n_bysurv[s] | log(p_surv[s]) + log_lambda[s]);

}

# Calculate log -likelihood for (n, r, t | \lambda , \varphi , \sigma)... same as above

if(groups ==2) for(b in 1: n_bird){

log_lik[surv_obs[b]] = log_lik[surv_obs[b]] + log(2) - 2*log(maxdist) + log(dist_obs[b

]) +

log(g_r(dist_obs[b], exp(log_pst_sig[surv_obs[b]])*maxdist)) +

log(mixing [1]* exp(exponential_lpdf(time_obs[b] | g_r(dist_obs[b],exp(

log_pev_sig[surv_obs[b]])*maxdist)*phi_avail[surv_obs[b],1])) +

mixing [2]* exp(exponential_lpdf(time_obs[b] | g_r(dist_obs[b],exp(

log_pev_sig[surv_obs[b]])*maxdist)*phi_avail[surv_obs[b],2]))) -

log(p_surv[surv_obs[b]]);

}

if(groups ==1) for(b in 1: n_bird){

log_lik[surv_obs[b]] = log_lik[surv_obs[b]] + log(2) - 2*log(maxdist) + log(dist_obs[b

]) +

log(g_r(dist_obs[b], exp(log_pst_sig[surv_obs[b]])*maxdist)) +

exponential_lpdf(time_obs[b] | g_r(dist_obs[b],exp(log_pev_sig[surv_obs[b

]])*maxdist)*phi_avail[surv_obs[b],1]) -

log(p_surv[surv_obs[b]]);

}

# This calculation is split into 2 pieces , because of integers , reals , and the C++

oddity that: int/int = int

global_p = sum(n_bysurv);

global_p = global_p / sum(totN);

}
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Supplementary tables and figures
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Figure B.1 Caterpillar plot of posterior estimates for detection probability p(det) from a rep-
resentative complete replicate set of simulations. Vertical gray bars show the true
value, dots show the posterior median estimate, and horizontal lines show 95%
credible intervals. Rows show the availability and model used in data simulation.
Columns show the perceptibility used in data simulation.
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Table B.1 Bias of median posterior detection probability. Rows indicate the availability and
model used for data simulation. Columns indicate the perceptibility used in data
simulation and the model used for inference. Total observations n(obs) = 800.

Perceptibility

Event model State model Combined model
Data Availability 0.40 0.65 0.83 0.98 0.40 0.65 0.83 0.98 0.40 0.65 0.98

E
v
en
t

0.40 0.03 0.02 0.03 0.02 -0.04 -0.05 -0.02 -0.00 0.01 0.01
0.65 0.01 0.01 0.01 -0.01 -0.10 -0.12 -0.07 -0.04
0.83 -0.00 0.00 -0.00 0.00 -0.13 -0.15 -0.11 -0.03 -0.02
0.98 -0.00 0.00 -0.00 -0.00 -0.16 -0.18 -0.13 -0.04 -0.01 -0.03

S
ta
te

0.40 0.06 0.08 0.06 0.01 0.01 0.01 0.01 -0.01 0.03 0.00
0.65 0.09 0.11 0.09 0.01 0.00 -0.00 0.01 -0.02
0.83 0.14 0.17 0.13 0.02 0.00 -0.00 0.02 -0.02 0.01
0.98 0.32 0.34 0.17 0.02 0.00 0.00 0.02 -0.01 0.00 -0.01

Table B.2 Observed 50% coverage percentages for estimates of detection probability based on
50 replicates with 800 observations per dataset. Rows indicate the availability and
model used for data simulation. Columns indicate the perceptibility used in data
simulation and the model used for inference. Coverage values between (36, 64) are
within a 95% confidence interval for nominal coverage.

Perceptibility
Event model State model Combined model

Data Availability 0.40 0.65 0.83 0.98 0.40 0.65 0.83 0.98 0.40 0.65 0.98

E
ve

n
t

0.40 52 56 54 34 16 22 46 48 62 42
0.65 34 52 44 56 0 0 20 44
0.83 36 46 32 48 0 0 6 42 46
0.98 40 42 42 40 0 0 0 2 30 2

S
ta

te

0.40 20 34 52 42 56 34 46 46 41 50
0.65 2 6 12 40 38 48 42 44
0.83 0 0 0 42 46 48 60 48 40
0.98 0 0 0 0 38 50 44 64 38 66

Table B.3 Bias of median posterior availability. The apparent disappearance of bias for event
models fit to state data at high availability reflects the fact there’s little room to
be biased when availability is already 98%. Rows indicate the availability and
model used for data simulation. Columns indicate the perceptibility used in data
simulation and the model used for inference. Total observations n(obs) = 800.

Perceptibility

Event model State model Combined model
Data Availability 0.40 0.65 0.83 0.98 0.40 0.65 0.83 0.98 0.40 0.65 0.98

E
v
en

t

0.40 0.07 0.03 0.03 0.04 -0.09 -0.08 -0.03 0.02 0.03 0.03
0.65 0.01 0.00 0.00 0.00 -0.21 -0.17 -0.09 -0.02
0.83 -0.00 0.01 -0.01 0.01 -0.26 -0.20 -0.12 -0.01 -0.01
0.98 -0.00 -0.00 -0.00 -0.00 -0.22 -0.17 -0.11 -0.02 -0.01 -0.00

S
ta
te

0.40 0.13 0.11 0.06 0.02 0.02 0.01 0.01 0.01 0.07 0.02
0.65 0.11 0.11 0.06 0.02 -0.01 -0.01 -0.00 -0.01
0.83 0.09 0.08 0.04 0.02 0.00 -0.00 0.00 0.00 0.02
0.98 0.01 0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 0.00 0.00
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Figure B.2 Caterpillar plot of posterior estimates for availability pa from a representative
complete replicate set of simulations. Vertical gray bars show the true value,
dots show the posterior median estimate, and horizontal lines show 95% credible
intervals. Rows show the availability and model used in data simulation. Columns
show the perceptibility used in data simulation.

Table B.4 Observed 50% coverage percentages for estimates of availability based on 50 repli-
cates with 800 observations per dataset. Rows indicate the availability and model
used for data simulation. Columns indicate the perceptibility used in data simula-
tion and the model used for inference. Coverage values between (36, 64) are within
a 95% confidence interval for nominal coverage.

Perceptibility
Event model State model Combined model

Data Availability 0.40 0.65 0.83 0.98 0.40 0.65 0.83 0.98 0.40 0.65 0.98

E
ve

n
t

0.40 50 46 42 28 20 24 46 38 62 32
0.65 38 56 40 62 0 0 10 48
0.83 40 44 52 44 0 0 0 56 60
0.98 30 52 50 54 0 0 0 0 36 58

S
ta

te

0.40 22 34 48 38 56 38 54 44 45 38
0.65 12 8 24 50 46 46 52 46
0.83 0 2 18 38 46 50 54 48 36
0.98 6 36 40 38 42 36 34 48 42 36
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Figure B.3 Caterpillar plot of posterior estimates for perceptibility from a representative com-
plete replicate set of simulations. Vertical gray bars show the true value, dots show
the posterior median estimate, and horizontal lines show 95% credible intervals.
Rows show the availability and model used in data simulation. Columns show the
perceptibility used in data simulation.

Table B.5 Bias of median posterior perceptibility. The apparent disappearance of bias for
event models fit to state data at high perceptibility reflects the fact there’s little
room to be biased when perceptibility is already 98%. Rows indicate the availability
and model used for data simulation. Columns indicate the perceptibility used in
data simulation and the model used for inference. Total observations n(obs) = 800.

Perceptibility

Event model State model Combined model
Data Availability 0.40 0.65 0.83 0.98 0.40 0.65 0.83 0.98 0.40 0.65 0.98

E
v
en

t

0.40 0.00 0.01 0.00 -0.03 -0.01 0.00 0.00 -0.03 -0.00 -0.05
0.65 0.00 0.01 0.01 -0.02 -0.03 -0.01 0.00 -0.02
0.83 0.00 0.00 0.00 -0.01 -0.05 -0.04 -0.00 -0.02 -0.01
0.98 0.00 0.01 0.00 0.00 -0.10 -0.09 -0.04 -0.02 -0.01 -0.03

S
ta
te

0.40 0.02 0.02 0.02 -0.02 -0.00 0.00 0.01 -0.02 0.00 -0.04
0.65 0.06 0.06 0.06 -0.02 0.01 0.00 0.02 -0.02
0.83 0.11 0.14 0.11 -0.00 0.01 -0.00 0.02 -0.02 0.00
0.98 0.31 0.34 0.17 0.02 0.00 0.01 0.02 -0.01 0.00 -0.02
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Table B.6 Observed 50% coverage percentages for estimates of perceptibility based on 50
replicates with 800 observations per dataset. Rows indicate the availability and
model used for data simulation. Columns indicate the perceptibility used in data
simulation and the model used for inference. Coverage values between (36, 64) are
within a 95% confidence interval for nominal coverage.

Perceptibility
Event model State model Combined model

Data Availability 0.40 0.65 0.83 0.98 0.40 0.65 0.83 0.98 0.40 0.65 0.98

E
ve

n
t

0.40 52 56 50 58 40 52 50 62 60 0
0.65 52 58 50 76 6 46 38 68
0.83 48 50 64 74 2 26 58 60 60
0.98 44 46 42 48 0 2 40 72 38 12

S
ta

te

0.40 26 40 42 76 50 44 48 68 53 6
0.65 2 12 26 70 46 50 52 50
0.83 0 2 0 82 38 46 50 62 44
0.98 0 0 0 0 38 42 38 72 42 56
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Figure B.4 Model comparisons between combined and true models in expected predictive
accuracy (∆elpd) relative to the standard error of that difference. Dashed vertical
lines show 95% confidence intervals for the hypothesis that models are equally
predictive – i.e., ∆elpd is zero. Large dots shows the median value across all
simulated datasets, while horizontal lines show the central 90% quantiles.
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Table B.7 Percent bias of the median posterior expected abundance (calculated from log-scale
bias averaged over 50 replicates). Rows indicate the availability and model used
for data simulation. Columns indicate the perceptibility used in data simulation
and the model used for inference. Total observations n(obs) = 400.

Perceptibility
Event model State model Combined model

Data Availability 0.40 0.65 0.83 0.98 0.40 0.65 0.83 0.98 0.40 0.65 0.98

E
ve

n
t

0.40 -18 -16 -10 -6 19 11 3 -0 -10 -2
0.65 -4 -0 2 5 55 35 17 12
0.83 3 1 -0 1 73 41 16 7 9
0.98 -1 -0 0 0 71 40 17 6 4 6

S
ta

te

0.40 -30 -21 -13 -4 -9 -1 -2 2 -22 -1
0.65 -22 -20 -13 -1 4 0 -1 5
0.83 -28 -25 -15 -1 -0 -1 -2 6 -5
0.98 -48 -35 -17 -2 -2 -1 -4 3 -2 3

Table B.8 Observed 50% coverage percentages for estimates of expected abundance based on
50 replicates with 800 observations per dataset. Rows indicate the availability and
model used for data simulation. Columns indicate the perceptibility used in data
simulation and the model used for inference. Coverage values between (36, 64) are
within a 95% confidence interval for nominal coverage.

Perceptibility
Event model State model Combined model

Data Availability 0.40 0.65 0.83 0.98 0.40 0.65 0.83 0.98 0.40 0.65 0.98

E
ve

n
t

0.40 50 48 52 54 38 50 50 46 64 50
0.65 48 58 46 50 0 8 30 40
0.83 56 54 44 78 0 0 28 42 48
0.98 56 54 72 100 0 0 8 16 54 20

S
ta

te

0.40 24 36 48 44 54 40 56 56 40 52
0.65 16 16 24 52 54 40 58 52
0.83 0 0 2 70 56 52 54 58 46
0.98 0 0 0 100 54 50 54 82 54 82
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APPENDIX C. SUPPORTING FIGURES FOR CHAPTER 4

Supplementary figures
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Figure C.1 Posterior marginal estimates of abundance density (per km2), detection proba-
bility, availability, and perceptibility. By definition, Pr(Detection) = availability
× perceptibility. Black lines show 95% credible intervals, orange lines show 50%
credible intervals, and black dots show posterior medians.
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Figure C.2 Posterior parameter estimates. All estimates are on the log-scale for the appro-
priate model component. Abundance: treatment-year effects plus random loca-
tion-specific variability. Availability: availability rate intercepts for hard- and
easy-to-detect birds, their difference, and the mixing parameter γ giving the pro-
portion of birds that are hard-to-detect; covariates for time of day, Julian date,
and cloud cover; random day-to-day availability variability. Event perceptibility:
intercept terms and a covariate for wind. State perceptibility: intercept term.
Black lines show 95% credible intervals, orange lines show 50% credible intervals,
and black dots show the posterior mean.
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Figure C.3 Posterior parameter estimates. All estimates are on the log-scale for the appro-
priate model component. Abundance: treatment-year effects plus random loca-
tion-specific variability. Availability: availability rate intercepts for hard- and
easy-to-detect birds, their difference, and the mixing parameter γ giving the pro-
portion of birds that are hard-to-detect; covariates for time of day, Julian date,
and cloud cover; random day-to-day availability variability. Event perceptibility:
intercept terms and a covariate for wind. State perceptibility: intercept term.
Black lines show 95% credible intervals, orange lines show 50% credible intervals,
and black dots show the posterior mean.
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Figure C.4 Posterior parameter estimates. All estimates are on the log-scale for the appro-
priate model component. Abundance: treatment-year effects plus random loca-
tion-specific variability. Availability: availability rate intercepts for hard- and
easy-to-detect birds, their difference, and the mixing parameter γ giving the pro-
portion of birds that are hard-to-detect; covariates for time of day, Julian date,
and cloud cover; random day-to-day availability variability. Event perceptibility:
intercept terms and a covariate for wind. State perceptibility: intercept term.
Black lines show 95% credible intervals, orange lines show 50% credible intervals,
and black dots show the posterior mean.
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Figure C.5 Posterior parameter estimates. All estimates are on the log-scale for the appro-
priate model component. Abundance: treatment-year effects plus random loca-
tion-specific variability. Availability: availability rate intercepts for hard- and
easy-to-detect birds, their difference, and the mixing parameter γ giving the pro-
portion of birds that are hard-to-detect; covariates for time of day, Julian date,
and cloud cover; random day-to-day availability variability. Event perceptibility:
intercept terms and a covariate for wind. State perceptibility: intercept term.
Black lines show 95% credible intervals, orange lines show 50% credible intervals,
and black dots show the posterior mean.
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Figure C.6 Posterior parameter estimates. All estimates are on the log-scale for the appro-
priate model component. Abundance: treatment-year effects plus random loca-
tion-specific variability. Availability: availability rate intercepts for hard- and
easy-to-detect birds, their difference, and the mixing parameter γ giving the pro-
portion of birds that are hard-to-detect; covariates for time of day, Julian date,
and cloud cover; random day-to-day availability variability. Event perceptibility:
intercept terms and a covariate for wind. State perceptibility: intercept term.
Black lines show 95% credible intervals, orange lines show 50% credible intervals,
and black dots show the posterior mean.
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Figure C.7 Posterior parameter estimates. All estimates are on the log-scale for the appro-
priate model component. Abundance: treatment-year effects plus random loca-
tion-specific variability. Availability: availability rate intercepts for hard- and
easy-to-detect birds, their difference, and the mixing parameter γ giving the pro-
portion of birds that are hard-to-detect; covariates for time of day, Julian date,
and cloud cover; random day-to-day availability variability. Event perceptibility:
intercept terms and a covariate for wind. State perceptibility: intercept term.
Black lines show 95% credible intervals, orange lines show 50% credible intervals,
and black dots show the posterior mean.
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